Person:
Calvo Garrido, María Lourdes

Loading...
Profile Picture
First Name
María Lourdes
Last Name
Calvo Garrido
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Ingeniería Química y de Materiales
Area
Ingeniería Química
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Item
    The encapsulation of hydroxytyrosol-rich olive oil in Eudraguard® protect via supercritical fluid extraction of emulsions
    (Journal of Food Engineering, 2021) Tirado, Diego ; Latini, Angela; Calvo Garrido, María Lourdes
    The SFEE technology was used to micronize the food-approved-biopolymer Eudraguard® protect. After setting the ratio of emulsion phases to 20:80 ethyl acetate:water, higher surfactant (0.1–10.0%) and lower polymer (1–10%) concentrations reduced the size of the particles. By halving the stirring speed to 1250 rpm during the homogenization of the emulsion, larger particles were formed. All these manipulations allowed the creation of particles ranging from 10 nm to 200 nm. A higher viscosity of the organic phase, achieved with 2% vitamin E, increased the particle size to 300 nm. Afterwards, SFEE was used to encapsulate hydroxytyrosol-rich olive oil (HT-oil), obtained from alperujo, in Eudraguard® protect for its preservation. Spherical non-aggregate particles were formed with an average of 230 nm. High degrees of encapsulation were possible (up to 99%) resulting in loadings of HT-oil in the obtained particles of 39% with 0.7 mg HT per g of particle.
  • Item
    Inactivation of clostridium spores in honey with supercritical CO2 and in combination with essential oils
    (Processes, 2022) Dacal-Gutiérrez, Alejandro; Tirado, Diego ; Calvo Garrido, María Lourdes
    The presence of tens of Clostridium botulinum spores per gram of honey can cause infantile botulism. Thermal treatment is insufficient to inactivate these resistant forms. This study explored the effectiveness of supercritical CO2 (scCO2) on its own and combined with lemon (LEO), clove (CLEO), and cinnamon (CEO) essential oils on the inactivation of Clostridium sporogenes (CECT 553) as a surrogate of Clostridium botulinum. In water, the degree of inactivation at 10 MPa after 60 min increased with the increasing temperature, reducing the population by 90% at 40 °C and by 99.7% at 80 °C. In contrast, when applied to honey, scCO2 did not inactivate Clostridium spores satisfactorily at temperatures below 70 °C, which was related to the protective effect of honey. Meanwhile, scCO2 modified with CEO (<0.4% mass) improved the inactivation degree, with a 1.3-log reduction achieved at 60 °C. With this same mixture, a reduction of 3.7 logs was accomplished in a derivative with 70% moisture. Honey was very sensitive to the temperature of the applied CO2. The obtained product could be used as a novel food, food ingredient, cosmetic, or medicine.