Person:
Porras Gallo, María Almudena

Loading...
Profile Picture
First Name
María Almudena
Last Name
Porras Gallo
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 5 of 5
  • Item
    C3G, through its GEF activity, induces megakaryocytic differentiation and proplatelet formation
    (Cell communication and signaling, 2018) Ortiz Rivero, Sara; José María de Pereda; Anguita Mandly, Eduardo Luis; Porras Gallo, María Almudena; Guerrero, Carmen
    Background: Megakaryopoiesis allows platelet formation, which is necessary for coagulation, also playing an important role in different pathologies. However, this process remains to be fully characterized. C3G, an activator of Rap1 GTPases, is involved in platelet activation and regulates several differentiation processes. Methods: We evaluated C3G function in megakaryopoiesis using transgenic mouse models where C3G and C3GΔCat (mutant lacking the GEF domain) transgenes are expressed exclusively in megakaryocytes and platelets. In addition, we used different clones of K562, HEL and DAMI cell lines with overexpression or silencing of C3G or GATA-1. Results: We found that C3G participates in the differentiation of immature hematopoietic cells to megakaryocytes. Accordingly, bone marrow cells from transgenic C3G, but not those from transgenic C3GΔCat mice, showed increased expression of the differentiation markers CD41 and CD61, upon thrombopoietin treatment. Furthermore, C3G overexpression increased the number of CD41+ megakaryocytes with high DNA content. These results are supported by data obtained in the different models of megakaryocytic cell lines. In addition, it was uncovered GATA-1 as a positive regulator of C3G expression. Moreover, C3G transgenic megakaryocytes from fresh bone marrow explants showed increased migration from the osteoblastic to the vascular niche and an enhanced ability to form proplatelets. Although the transgenic expression of C3G in platelets did not alter basal platelet counts, it did increase slightly those induced by TPO injection in vivo. Moreover, platelet C3G induced adipogenesis in the bone marrow under pathological conditions. Conclusions: All these data indicate that C3G plays a significant role in different steps of megakaryopoiesis, acting through a mechanism dependent on its GEF activity.
  • Item
    p38α Mediates Cell Survival in Response to Oxidative Stress via Induction of Antioxidant Genes
    (Journal of Biological Chemistry, 2012) Gutiérrez Uzquiza, Álvaro; Arechederra, María; Bragado Domingo, Paloma; Aguirre-Ghiso, Julio A.; Porras Gallo, María Almudena
    We reveal a novel pro-survival role for mammalian p38α in response to H(2)O(2), which involves an up-regulation of antioxidant defenses. The presence of p38α increases basal and H(2)O(2)-induced expression of the antioxidant enzymes: superoxide-dismutase 1 (SOD-1), SOD-2, and catalase through different mechanisms, which protects from reactive oxygen species (ROS) accumulation and prevents cell death. p38α was found to regulate (i) H(2)O(2)-induced SOD-2 expression through a direct regulation of transcription mediated by activating transcription factor 2 (ATF-2) and (ii) H(2)O(2)-induced catalase expression through regulation of protein stability and mRNA expression and/or stabilization. As a consequence, SOD and catalase activities are higher in WT MEFs. We also found that this p38α-dependent antioxidant response allows WT cells to maintain an efficient activation of the mTOR/p70S6K pathway. Accordingly, the loss of p38α leads to ROS accumulation in response to H(2)O(2), which causes cell death and inactivation of mTOR/p70S6K signaling. This can be rescued by either p38α re-expression or treatment with the antioxidants, N-acetyl cysteine, or exogenously added catalase. Therefore, our results reveal a novel homeostatic role for p38α in response to oxidative stress, where ROS removal is favored by antioxidant enzymes up-regulation, allowing cell survival and mTOR/p70S6K activation.
  • Item
    C3G down-regulates p38 MAPK activity in response to stress by Rap-1 independent mechanisms: Involvement in cell death
    (Cellular Signalling, 2010) Gutiérrez Uzquiza, Álvaro; Arechederra, María; Molina, Isabel; Baños, Rocío; Maia, Vera; Benito De Las Heras, Manuel R.; Guerrero, Carmen; Porras Gallo, María Almudena
    We present here evidences supporting a negative regulation of p38α MAPK activity by C3G in MEFs triggered by stress, which can mediate cell death or survival depending on the stimuli. Upon serum deprivation, C3G induces survival through inhibition of p38α activation, which mediates apoptosis. In contrast, in response to H2O2, C3G behaves as a pro-apoptotic molecule, as its knock-down or knock-out enhances survival through up-regulation of p38α activation, which plays an anti-apoptotic role under these conditions. Moreover, the C3G target, Rap-1, plays an opposite role, also through regulation of p38α MAPK activity. Our data also suggest that changes in the protein levels of some members of the Bcl-2 family could account for the regulation of cell death by C3G and/or Rap-1 through p38α MAPK. Bim/Bcl-xL ratio appears to be important in the regulation of cell survival, both upon serum deprivation and in response to H2O2. In addition, the increase in BNIP-3 levels induced by C3G knock-down in wt cells treated with H2O2 might play a role preventing cell death. Therefore, we can conclude that C3G is a negative regulator of p38α MAPK in MEFs, while Rap-1 is a positive regulator, but both, through the regulation of p38α activity, can promote cell survival or cell death depending on the stimuli.
  • Item
    HGF/c-Met signaling promotes liver progenitor cell migration and invasion by an epithelial-mesenchymal transition-independent, phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model
    (BBA - Molecular Cell Research, 2015) Suárez Causado, Amileth; Caballero Díaz, D.; Bertrán, E.; Roncero Romero, César; Addante, Annalisa; García Álvaro, M.; Fernández García De Castro, Margarita; Herrera González, Blanca María; Porras Gallo, María Almudena; Fabregat, I.; Sánchez Muñoz, Aranzazu
    Oval cells constitute an interesting hepatic cell population. They contribute to sustain liver regeneration during chronic liver damage, but in doing this they can be target of malignant conversion and become tumor-initiating cells and drive hepatocarcinogenesis. The molecular mechanisms beneath either their pro-regenerative or pro-tumorigenic potential are still poorly understood. In this study, we have investigated the role of the HGF/c-Met pathway in regulation of oval cell migratory and invasive properties. Our results show that HGF induces c-Met-dependent oval cell migration both in normal culture conditions and after in vitro wounding. HGF-triggered migration involves Factin cytoskeleton reorganization, which is also evidenced by activation of Rac1. Furthermore, HGF causes ZO-1 translocation from cell-cell contact sites to cytoplasm and its concomitant activation by phosphorylation. However, no loss of expression of cell-cell adhesion proteins, including E-cadherin, ZO-1 and Occludin-1, is observed. Additionally, migration does not lead to cell dispersal but to a characteristic organized pattern in rows, in turn associated with Golgi compaction, providing strong evidence of a morphogenic collective migration. Besides migration, HGF increases oval cell invasion through extracellular matrix, process that requires PI3K activation and is at least partly mediated by expression and activation of metalloproteases. Altogether, our findings provide novel insights into the cellular and molecular mechanisms mediating the essential role of HGF/c-Met signaling during oval cell-mediated mouse liver regeneration.
  • Item
    Immune Resistance and EGFR Antagonists in Colorectal Cancer
    (Cancers, 2019) Giordano, G.; Remo, A.; Porras Gallo, María Almudena; Pancione, M.
    Targeting the epidermal growth factor receptor (EGFR) either alone or in combination with chemotherapy in patients with RAS wild type metastatic colorectal cancer (mCRC) has revolutionized the treatment of CRC, but with less results than initially envisaged. In recent years, the discovery of multiple pathways leading to the escape from anti-EGFR therapy has revealed an enormous complexity and heterogeneity of human CRC due to the intrinsic genomic instability and immune/cancer cell interaction. Therefore, understanding the mechanistic basis of acquired resistance to targeted therapies represents a major challenge to improve the clinical outcomes of patients with CRC. The latest findings strongly suggest that complex molecular alterations coupled with changes of the immune tumor microenvironment may substantially contribute to the clinical efficacy of EGFR antagonist. In this review, we discuss the most recent findings that contribute to both primary and acquired anti-EGFR therapy resistance. In addition, we analyze how strategies aiming to enhance the favorable effects in the tumor microenvironment may contribute to overcome resistance to EGFR therapies.