Person:
Blázquez Fernández, Enrique

Loading...
Profile Picture
First Name
Enrique
Last Name
Blázquez Fernández
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Medicina
Department
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 6 of 6
  • Item
    Functional Glucokinase Isoforms Are Expressed in Rat Brain
    (Journal of Neurochemistry, 2000) Roncero Rincón, Isabel; Álvarez García, Elvira; Vázquez Pérez, Patricia; Blázquez Fernández, Enrique; Wiley
    Recently, the description of glucokinase mRNA in certain neuroendocrine cells has opened new ways to characterize this enzyme in the rat brain. In this study, we found glucokinase mRNA and a similar RNA splicing pattern of the glucokinase gene product in rat hypothalamus and pancreatic islets; the mRNA that codes for B1 isoform was the most abundant, with minor amounts of those coding for the B2, P1, P2, P1/B2, and P2/B2 isoforms. Glucokinase gene expression in rat brain gave rise to a protein of 52 kDa with a high apparent Km for glucose and no product inhibition by glucose 6-phosphate, with a contribution to the total glucose phosphorylating activity of between 40 and 14%; the hypothalamus and cerebral cortex were the regions of maximal activity. Low and high Km hexokinases were characterized by several criteria. Also, using RT-PCR analysis we found a glucokinase regulatory protein mRNA similar to that previously reported in liver. These findings indicate that the glucokinase present in rat brain should facilitate the adaptation of this organ to fluctuations in blood glucose concentrations, and the expression of glucokinase and GLUT-2 in the same hypothalamic neurons suggests a role in glucose sensing.
  • Item
    The cytoplasmic domain close to the transmembrane region of the glucagon-like peptide-1 receptor contains sequence elements that regulate agonist-dependent internalisation
    (Journal of Endocrinology, 2005) Vázquez Pérez, Patricia; Roncero Rincón, Isabel; Blázquez Fernández, Enrique; Álvarez García, Elvira
    In order to gain better insight into the molecular events involved in the signal transduction generated through glucagon-like peptide-1 (GLP-1) receptors, we tested the effect of deletions and point mutations within the cytoplasmic tail of this receptor with a view to establishing relationships between signal transduction desensitisation and receptor internalisation. Wild-type and truncated (deletion of the last 27 amino acids (GLPR 435R) and deletion of 44 amino acids (GLPR 418R)) GLP-1 receptors bound the agonist with similar affinity. Deletion of the last 27 amino acids decreased the internalisation rate by 78%, while deletion of 44 amino acids containing all the phosphorylation sites hitherto described in this receptor decreased the internalisation rate by only 47%. Binding of the ligand to both receptors stimulated adenylyl cyclase. In contrast, deletion of the region containing amino acids 419 to 435 (GLPR 419delta435) increased the internalisation rate by 268%, and the replacement of EVQ(408-410) by alanine (GLPR A(408-410)) increased this process to 296%. In both receptors, the efficacy in stimulating adenylate cyclase was decreased. All the receptors studied were internalised by coated pits, except for the receptor with a deletion of the last 44 amino acids, which also had a faster resensitisation rate. Our findings indicate that the neighbouring trans-membrane domain of the carboxyl-terminal tail of the GLP-1 receptor contains sequence elements that regulate agonist-dependent internalisation and transmembrane signalling.
  • Item
    Expression of glucose transporter isoform GLUT‐2 and glucokinase genes in human brain
    (Journal of Neurochemistry, 2004) Chowen, Julie A.; Rábano, Alberto; Vázquez Pérz, Patricia; Roncero Rincón, Isabel; Álvarez García, Elvira; Sanz Miguel, María Del Carmen; Blázquez Fernández, Enrique; Wiley
    The glucose transporter isoform-2 (GLUT-2) and glucokinase are considered to be components of a glucose sensor system controlling several key processes, and hence may modulate feeding behaviour. We have found GLUT-2 and glucokinase mRNAs in several brain regions, including the ventromedial and arcuate nuclei of the hypothalamus. GLUT-2, glucokinase and glucokinase regulatory protein mRNAs and proteins were present in these areas as determined by biochemical approaches. In addition, glucose-phosphorylating activity with a high apparent Km for glucose that displayed no product inhibition by glucose-6-phosphate was observed. Increased glycaemia after meals may be recognized by specific hypothalamic neurones due to the high Km of GLUT-2 and glucokinase. This enzyme is considered to be the true glucose sensor because it catalyses the rate-limiting step of glucose catabolism its activity being regulated by interaction with glucokinase regulatory protein, that functions as a metabolic sensor
  • Item
    Substitution of the cysteine 438 residue in the cytoplasmic tail of the glucagon-like peptide-1 receptor alters signal transduction activity
    (Journal of Endocrinology, 2005) Vázquez Pérez, Patricia; Roncero Rincón, Isabel; Blázquez Fernández, Enrique; Álvarez García, Elvira; Bioscientifica
    Several G-protein-coupled receptors contain cysteine residues in the C-terminal tail that may modulate receptor function. In this work we analysed the substitution of Cys438 by alanine in the glucagon-like peptide-1 (GLP-1) receptor (GLPR), which led to a threefold decrease in cAMP production, although endocytosis and cellular redistribution of GLP-1 receptor agonist-induced processes were unaffected. Additionally, cysteine residues in the C-terminal tail of several G-protein-coupled receptors were found to act as substrates for palmitoylation, which might modify the access of protein kinases to this region. His-tagged GLP-1 receptors incorporated 3H-palmitate. Nevertheless, substitution of Cys438 prevented the incorporation of palmitate. Accordingly, we also investigated the effect of substitution of the consensus sequence by protein kinase C (PKC) Ser431/432 in both wild-type and Ala438 GLP-1 receptors. Substitution of Ser431/432 by alanine did not modify the ability of wild-type receptors to stimulate adenylate cyclase or endocytosis and recycling processes. By contrast, the substitution of Ser431/432 by alanine in the receptor containing Ala438 increased the ability to stimulate adenylate cyclase. All types of receptors were mainly internalised through coated pits. Thus, cysteine 438 in the cytoplasmic tail of the GLP-1 receptor would regulate its interaction with G-proteins and the stimulation of adenylyl cyclase. Palmitoylation of this residue might control the access of PKC to Ser431/432.
  • Item
    Evidence that glucokinase regulatory protein is expressed 
and interacts with glucokinase in rat brain
    (Journal of Neurochemistry, 2001) Chowen, Julie A.; Vázquez Pérez, Patricia; Álvarez García, Elvira; Roncero Rincón, Isabel; Blázquez Fernández, Enrique; Wiley
    Our previous description of functional glucokinase isoforms in the rat brain has opened new questions concerning the presence of glucokinase regulatory protein in the brain and the functional role of its interactions with glucokinase. In this study, we found glucokinase regulatory protein mRNA in rat brain, pancreatic islets and liver. In addition, we found two other variant splicing isoforms, both identified in hypothalamus, pancreatic islets and liver. In situ hybridization studies revealed the presence of glucokinase regulatory protein mRNA, the highest number of positive cells being found in the paraventricular nucleus of the hypothalamus. Glucokinase regulatory protein gene expression gave rise to a protein of 69 kDa mainly in nuclear and soluble cell fractions. Glutathione S-transferase protein fused either to rat liver or human pancreatic islet glucokinase were able to precipitate glucokinase regulatory protein from liver or hypothalamic extracts in the presence of fructose-6-phosphate, the amount of protein co-precipitated being decreased with fructose-1-phosphate. These findings suggest that the presence of glucokinase and glucokinase regulatory protein in the rat brain would facilitate the adaptation of this organ to fluctuations in blood glucose concentrations, and both proteins may participate in glucose-sensing and metabolic regulation in the central nervous system.
  • Item
    The expression of GLP‐1 receptor mRNA and protein allows the effect of GLP‐1 on glucose metabolism in the human hypothalamus and brainstem
    (Journal of Neurochemistry, 2005) Álvarez García, Elvira; Martínez Ibáñez, María Dolores; Roncero Rincón, Isabel; Chowen, Julie A.; García‐Cuartero, Beatriz; Gispert, Juan D.; Sanz Miguel, María Del Carmen; Vázquez Pérez, Patricia; Antonio, Maldonado; De Cáceres, Javier; Desco, Manuel; Pozo García, Miguel Ángel; Blázquez Fernández, Enrique
    In the present work, several experimental approaches were used to determine the presence of the glucagon-like peptide-1 receptor (GLP-1R) and the biological actions of its ligand in the human brain. In situ hybridization histochemistry revealed specific labelling for GLP-1 receptor mRNA in several brain areas. In addition, GLP-1R, glucose transporter isoform (GLUT-2) and glucokinase (GK) mRNAs were identified in the same cells, especially in areas of the hypothalamus involved in feeding behaviour. GLP-1R gene expression in the human brain gave rise to a protein of 56 kDa as determined by affinity cross-linking assays. Specific binding of 125I-GLP-1(7-36) amide to the GLP-1R was detected in several brain areas and was inhibited by unlabelled GLP-1(7-36) amide, exendin-4 and exendin (9-39). A further aim of this work was to evaluate cerebral-glucose metabolism in control subjects by positron emission tomography (PET), using 2-[F-18] deoxy-D-glucose (FDG). Statistical analysis of the PET studies revealed that the administration of GLP-1(7-36) amide significantly reduced (p < 0.001) cerebral glucose metabolism in hypothalamus and brainstem. Because FDG-6-phosphate is not a substrate for subsequent metabolic reactions, the lower activity observed in these areas after peptide administration may be due to reduction of the glucose transport and/or glucose phosphorylation, which should modulate the glucose sensing process in the GLUT-2- and GK-containing cells.