Person:
Iniesta Serrano, María Pilar

Loading...
Profile Picture
First Name
María Pilar
Last Name
Iniesta Serrano
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Clinical Relevance of Telomere Status and Telomerase Activity in Colorectal Cancer
    (PLOS ONE, 2016) Fernández-Marcelo, Tamara; Sánchez Pernaute, Andrés; Pascua, Irene; Juan Chocano, María Del Carmen De; Head, Jacqueline; Torres García, Antonio José; Iniesta Serrano, María Pilar; Michel M Ouellette
    The role of telomeres and telomerase in colorectal cancer (CRC) is well established as the major driving force in generating chromosomal instability. However, their potential as prognostic markers remains unclear. We investigated the outcome implications of telomeres and telomerase in this tumour type. We considered telomere length (TL), ratio of telomere length in cancer to non-cancer tissue (T/N ratio), telomerase activity and TERT levels; their relation with clinical variables and their role as prognostic markers. We analyzed 132 CRCs and paired non-cancer tissues. Kaplan-Meier curves for disease-free survival were calculated for TL, T/N ratio, telomerase activity and TERT levels. Overall, tumours had shorter telomeres than non-tumour tissues (P < 0.001) and more than 80% of CRCs displayed telomerase activity. Telomere lengths of non-tumour tissues and CRCs were positively correlated (P < 0.001). Considering telomere status and clinical variables, the lowest degree of telomere shortening was shown by tumours located in the rectum (P = 0.021). Regarding prognosis studies, patients with tumours showing a mean TL < 6.35 Kb experienced a significantly better clinical evolution (P < 0.001) and none of them with the highest degree of tumour telomere shortening relapsed during the follow-up period (P = 0.043). The mean TL in CRCs emerged as an independent prognostic factor in the Cox analysis (P = 0.017). Telomerase-positive activity was identified as a marker that confers a trend toward a poor prognosis. In CRC, our results support the use of telomere status as an independent prognostic factor. Telomere status may contribute to explaining the different molecular identities of this tumour type.
  • Item
    Poly (ADP-ribose) polymerase 3 (PARP3), a potential repressor of telomerase activity
    (Journal of Experimental & Clinical Cancer Research, 2014) Fernández-Marcelo, Tamara; Frías, Cristina; Pascua, Irene; Juan Chocano, María Del Carmen De; Head, Jacqueline; Gómez, Ana; Hernando Trancho, Florentino; Jarabo Sarceda, José Ramón; Díaz-Rubio García, Eduardo; Torres García, Antonio José; Rouleau, Michèle; Benito De Las Heras, Manuel R.; Iniesta, Pilar; Iniesta Serrano, María Pilar
    Background Considering previous result in Non-Small Cell Lung Cancer (NSCLC), we investigated in human cancer cells the role of PARP3 in the regulation of telomerase activity. Methods We selected A549 (lung adenocarcinoma cell line) and Saos-2 (osteosarcoma cell line), with high and low telomerase activity levels, respectively. The first one was transfected using a plasmid construction containing a PARP3 sequence, whereas the Saos-2 cells were submitted to shRNA transfection to get PARP3 depletion. PARP3 expression on both cell systems was evaluated by real-time quantitative PCR and PARP3 protein levels, by Western-blot. Telomerase activity was determined by TRAP assay. Results In A549 cells, after PARP3 transient transfection, data obtained indicated that twenty-four hours after transfection, up to 100-fold increased gene expression levels were found in the transfected cells with pcDNA/GW-53/PARP3 in comparison to transfected cells with the empty vector. Moreover, 48 hours post-transfection, telomerase activity decreased around 33%, and around 27%, 96 hours post-transfection. Telomerase activity average ratio was 0.67 ± 0.05, and 0.73 ± 0.06, respectively, with significant differences. In Saos-2 cells, after shRNA-mediated PARP3 silencing, a 2.3-fold increase in telomerase activity was detected in relation to the control. Conclusion Our data indicated that, at least in some cancer cells, repression of PARP3 could be responsible for an increased telomerase activity, this fact contributing to telomere maintenance and, therefore, avoiding genome instability.