Publication:
Generalized harmonic functions and unitary representations of low dimensional Lie groups

Loading...
Thumbnail Image
Full text at PDC
Publication Date
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The unitary representations of the three dimensional simple Lie groups are reconsidered from the perspective of harmonic functions acting on certain manifolds related to differential realisations of the groups themselves. By means of contractions of Lie groups, the procedure is also applied to the group E2 of rotations-translations in two dimensions.
Description
UCM subjects
Unesco subjects
Keywords
Citation
[1]Talman J D 1968 Special Functions, A Group Theoretic Approach () [2]Gel'fand I M, Minlos R A and Shapiro Z Y 1963 Representations of the Rotation and Lorentz Groups and their Applications (Oxford: PergamonPress) [3]Berezin F and Gel'fand I M 1962 Amer. Math. Soc. Translations 21 193 [4]Helgason S 1981 Topics in Harmonic Analysis on Homogeneous Spaces (Boston: Birkhauser) [5]Floyd L W 1985 Tokyo J. Math. 8 99 [6]Bargmann V 1947 Annals Math 48 568-640 [7]Bargmann V 1962 Rev. Mod. Phys. 34 829-845 [8]Gel'fand I, Graev M and Vilenkin 1966 Generalized Functions (New York: Academic) 5 [9]Lang S 1975 SL2(R) (Addison-Wesley Publishing Company) [10]Warner G 1972 Harmonic Analysis on Semisimple Lie Groups II (New York: Springer) [11]Fischer J, Niederle J and Raczka R 1966 J. Math. Phys. 7 816 [12]Huszár M M 1985 Acta Phys. Hungarica 58 175 [13]Mukunda N W 1967 J. Math. Phys. 8 50 [14]Mukunda N W 1968 J. Math. Phys. 9 417 [15]Strichartz R 1973 J. Funct. Anal 12 341 [16]Bég M A B and Ruegg H 1965 J. Math. Phys. 6 677 [17]Nelson T 1967 J. Math. Phys. 8 857-863 [18]Marsh S and Buck B 1982 J. Phys. A15 2337-2348 [19]Representation of Lie groups and special functions. Recent advances ed N Vilenkin, A Klimyk 1994, V. A. Groza a and A. A. Groza. (Dordrecht: Kluwer Academic Publishers) Transl. from the Russian by [20]1993 Representation of Lie groups and special functions. Volume 2: Class I representations, special functions, and integral transforms ed N Vilenkin, A Klimyk, V. A. Groza a and A. A. Groza (Dordrecht: Kluwer Academic Publishers) Transl. from the Russian by [21]1992 Representation of Lie groups and special functions. Volume 3: Classical and quantum groups and special functions ed N Vilenkin, A Klimyk, V. A. Groza a and A. A. Groza (Dordrecht: Kluwer Academic Publishers Group) Transl. from the Russian by [22]Negro J, del Olmo M and Rodriguez-Marco A 2002 J. Phys. A35 2283 Preprint quant-ph/0110152 [23]Campoamor-Stursberg R and Rausch de Traubenberg M 2014 (Preprint 1404.4705) [24]Naimark M A 1958 The linear representations of the Lorentz group (LHneHntie npedCTaraennH rpynntiLopenca) (Moskow: Fizmatgiz) [25]Ginsburg V A and Tamm I Y 1947 JETP 17 227 [26]Harish-Chandra 1947 Proc. R. Soc. Lond. A 189 372 [27]Stoyanov D T and Todorov I 1968 J. Math. Phys. 9 2146-2167 [28]Naimark M A 1964 Linear representations of the Lorentz group International series of monographs in pure and applied mathematics (PergamonPress) [29]Wybourne B G 1974 Classical Groups for Physicists (New York: John Wiley & Sons) [30]Ui H 1970 Prog. Theor. Phys. 44 689-702
Collections