Person:
Martínez Rodrigo, Abel

Loading...
Profile Picture
First Name
Abel
Last Name
Martínez Rodrigo
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Veterinaria
Department
Sanidad Animal
Area
Identifiers
UCM identifierORCIDScopus Author IDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 5 of 5
  • Item
    Alternative strategy for visceral leishmaniosis control: HisAK70-Salmonella Choleraesuis-pulsed dendritic cells
    (Comparative Immunology, Microbiology and Infectious Diseases, 2017) Carrión Herrero, Francisco Javier; Domínguez Bernal, Gustavo Ramón; Martínez Rodrigo, Abel; Mas Zubiri, Alicia; Blanco Gutiérrez, María Del Mar; Orden Gutiérrez, José Antonio; Fuente López, Ricardo De La
    Here, we describe a novel approach that exploits an attenuated mutant of Salmonella enterica serovar Choleraesuis as carrier to deliver a plasmid encoding protein HisAK70. Subsequently, dendritic cells (DCs) were pulsed with this vaccine vector. The aim of this study was to evaluate the effectiveness of the prepared HisAK70-S. Choleraesuis-pulsed DCs (HisAK70-SAL DCs) against visceral leishmaniosis (VL). In our ex vivo model of infection, the prepared formulations could decrease parasite growth by up to 80% by augmenting the production of IL-12p40 and by reducing arginase activity (ARG). Also, BALB/c mice when immunised with this formulation showed significant reduction in parasite burden in both spleen (20% of reduction) and liver (75% of reduction). The balance of the immune ratios IFN-γ/IL-10, TNF-α/IL-10, and IgG2a/IgG1 reflected the acquisition of an improved resistant phenotype in HisAK70-SAL DCs vaccinated mice compared to control mice. Our results suggest that HisAK70-SAL DCs could be a promising alternative approach for vaccine delivery that has the potential to fight Leishmania infantum (L. infantum) infection.
  • Item
    Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice
    (Vaccines, 2019) Martínez Rodrigo, Abel; S. Dias, Daniel; Ribeiro, Patrícia A. F.; Roatt, Bruno M.; Mas Zubiri, Alicia; Carrión Herrero, Francisco Javier; Coelho, Eduardo A. F.; Domínguez Bernal, Gustavo Ramón
    Leishmania amazonensis is the aetiological agent of a broad spectrum of leishmaniosis in South America. It can cause not only numerous cases of cutaneous leishmaniosis but also diffuse cutaneous leishmaniosis. Considering the diversity of parasite species causing different forms of the disease that coexist in the same region, it is desirable to develop a vaccine capable of eliciting cross-protection. We have previously described the use of HisAK70 DNA vaccine for immunization of mice to assess the induction of a resistant phenotype against Leishmania major and infantum infections. In this study, we extended its application in the murine model of infection by using L. amazonensis promastigotes. Our data revealed that 14 weeks post-infection, HisAK70-vaccinated mice showed key biomarkers of protection, such as higher iNOS/arginase activity, IFN-γ/IL-10, IFN-γ/IL-4, and GM-CSF/IL-10 ratios, in addition to an IgG2a-type response when compared to the control group. These findings correlated with the presentation of lower footpad swelling and parasite burdens in the immunized compared to the control mice. Overall, this study suggests that immunization with HisAK70 may be considered a suitable tool to combat leishmaniosis as it is able to induce a potent cellular immune response, which allows to control the infection caused by L. amazonensis.
  • Item
    Strength and medium-term impact of HisAK70 immunization in dogs: Vaccine safety and biomarkers of effectiveness for ex vivo Leishmania infantum infection
    (Comparative Immunology, Microbiology and Infectious Diseases, 2019) Martínez Rodrigo, Abel; Mas Zubiri, Alicia; Fernández-Cotrina, Javier; Belinchón-Lorenzo, Silvia; Orden Gutiérrez, José Antonio; Arias, Pablo; Fuente López, Ricardo De La; Carrión Herrero, Francisco Javier; Domínguez Bernal, Gustavo Ramón
    HisAK70 candidates have successfully been tested in cutaneous (CL) and visceral leishmaniosis (VL) mouse models. Here, we analyse different biomarkers in dog trials after a heterologous immunization strategy with a HisAK70 candidate (plasmid DNA plus adoptive transfer of peripheral blood-derived dendritic cells (DCs) pulsed with the same pathoantigen and CpG ODN as an adjuvant) to explore the antileishmanial activity in an ex vivo canine co-culture system in the presence of Leishmania infantum parasites. In the canine model, the heterologous HisAK70 vaccine could decrease the infection index in the DC-T cell co-culture system by up to 54% after 30 days and reach almost 67% after 100 days post-immunization, respectively, compared to those obtained in the control group of dogs. The observed security and potential to fight ex vivo L. infantum infection highlight a HisAK70 heterologous immunization strategy as a promising alternative to evaluate its effectiveness against canine VL.
  • Item
    Characterisation of the ex vivo virulence of Leishmania infantum isolates from Phlebotomus perniciosus from an outbreak of human leishmaniosis in Madrid, Spain
    (Parasites and Vectors, 2014) Jiménez, Maribel; Molina, Ricardo; Ordóñez Gutiérrez, Lara; Carrión Herrero, Francisco Javier; Domínguez Bernal, Gustavo Ramón; Martínez Rodrigo, Abel; Mas Zubiri, Alicia; Cutuli Simón, María Teresa
    Background Since mid 2009, an outbreak of human leishmaniosis in Madrid, Spain, has involved more than 560 clinical cases. Many of the cases occurred in people who live in areas around a newly constructed green park (BosqueSur). This periurban park provides a suitable habitat for sand flies (the vectors of Leishmania infantum). Indeed, studies of blood meals from sand flies captured in the area showed a strong association between the insect vector, hares or rabbits, and humans in the area. Interestingly, up to 70% of cases have been found in immunocompetent patients (aged between 46-60 years). This study was designed to evaluate the ex vivo virulence of the L. infantum isolates from Phlebotomus perniciosus captured in this area of Madrid. Methods Murine macrophages and dendritic cells were infected ex vivo with L. infantum strain BCN150, isolate BOS1FL1, or isolate POL2FL7. At different times after infection, the infection indices, cytokine production (IL-12p40 and IL-10), NO release and arginase activities were evaluated. Results Using an ex vivo model of infection in murine bone marrow-derived cells, we found that infection with isolates BOS1FL1 and POL2FL7 undermined host immune defence mechanisms in multiple ways. The main factors identified were changes in both the balance of iNOS versus arginase activities and the equilibrium between the production of IL-12 and IL-10. Infection with isolates BOS1FL1 and POL2FL7 also resulted in higher infection rates compared to the BCN150 strain. Infection index values at 24 h were as follows: BCN150-infected cells, 110 for infected MØ and 115 for infected DC; BOS1FL1-infected cells, 300 for infected MØ and 247 for infected DC; and POL2FL7-infected cells, 275 for infected MØ and 292 for infected DC. Conclusions Our data indicate that L. infantum isolates captured from this endemic area exhibited high virulence in terms of infection index, cytokine production and enzymatic activities involved in the pathogenesis of visceral leishmaniosis. Altogether, these data provide a starting point for the study of the virulence behaviour of parasites (BOS1FL1 and POL2FL7) isolated from P. perniciosus during the outbreak of human leishmaniosis in Madrid, Spain, and their involvement in infecting immunocompetent hosts.
  • Item
    HisAK70: progress towards a vaccine against different forms of leishmaniosis
    (2015) Carrión Herrero, Francisco Javier; Domínguez Bernal, Gustavo Ramón; Horcajo Iglesias, María Del Pilar; Orden Gutiérrez, José Antonio; Ruiz Santa Quiteria Serrano De La Cruz, José Antonio; Fuente López, Ricardo De La; Mas Zubiri, Alicia; Martínez Rodrigo, Abel; Ordóñez Gutiérrez, Lara
    Background Leishmania major and Leishmania infantum are among the main species that are responsible for cutaneous leishmaniosis (CL) and visceral leishmaniosis (VL), respectively. The leishmanioses represent the second-largest parasitic killer in the world after malaria. Recently, we succeeded in generating a plasmid DNA (pCMV-HISA70m2A) and demonstrated that immunized mice were protected against L. major challenge. The efficacy of the DNA-vaccine was further enhanced by the inclusion of KMP-11 antigen into the antibiotic-free plasmid pVAX1-asd. Methods Here, we describe the use of a HisAK70 DNA-vaccine encoding seven Leishmania genes (H2A, H2B, H3, H4, A2, KMP11 and HSP70) for vaccination of mice to assess the induction of a resistant phenotype against VL and CL. Results HisAK70 was successful in vaccinated mice, resulting in a high amount of efficient sterile hepatic granulomas associated with a hepatic parasite burden fully resolved in the VL model; and resulting in 100 % inhibition of parasite visceralization in the CL model. Conclusions The results suggest that immunization with the HisAK70 DNA-vaccine may provide a rapid, suitable, and efficient vaccination strategy to confer cross-protective immunity against VL and CL.