Person:
Sanz Landaluce, Jon

Loading...
Profile Picture
First Name
Jon
Last Name
Sanz Landaluce
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Analítica
Area
Química Analítica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 3 of 3
  • Item
    In vivo quantification of volatile organoselenium compounds released by bacteria exposed to selenium with HS-SPME-GC-MS. Effect of selenite and selenium nanoparticles
    (Talanta, 2021) Moreno Martín, Gustavo; Sanz Landaluce, Jon; León González, María Eugenia De; Madrid Albarrán, María Yolanda; Elsevier
    Quantification of volatile organoselenium species released by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), after their growth in the presence of 1 and 2 mg Se⋅L-1 as both selenite and chitosan modified selenium nanoparticles (Ch-SeNPs), was achieved by the application of a method based on headspace solid-phase microextraction (HS-SPME) and in-fiber internal standardization, combined with gas chromatography coupled to mass spectrometry (GC-MS). This method consisted of an initial extraction of the released volatile organoselenium compounds on the SPME fiber, followed by the extraction of internal standard (IS), deuterated dimethyl sulfide (d6-DMS), on the same fiber before its desorption at the injection port of GC-MS. The results showed that the biotransformation of selenite and Ch-SeNPs into volatile organoselenium compounds was dependent on both the type of bacterial species and the chemical form of selenium (Se) administered. In this sense, E. coli was able to biotransform both selenite and Ch-SeNPs into dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) while S. aureus, biotransformed selenite into DMSe and DMDSe and, Ch-SeNPs only into DMDSe. Additionally, the formation of a volatile mixed sulfur/selenium compound, dimethyl selenenyl sulfide (DMSeS), from Se in nanoparticulated form has been detected for the first time.
  • Item
    Fate and effect of in-house synthesized tellurium based nanoparticles on bacterial biofilm biomass and architecture. Challenges for nanoparticles characterization in living systems
    (Science of the Total Environment, 2020) Gómez Gómez, Beatriz; Sanz Landaluce, Jon; Pérez Corona, María Teresa; Madrid Albarrán, María Yolanda
    The unexpected impact of nanoparticles on environment and human health remains as a matter of concern. In this sense, understanding the interaction between nanoparticles and biological indicators such as microorganism may help to understand their fate and effect in environmental systems. However, the adverse effect of nanoparticles greatly depends on their properties and, therefore, a precise evaluation of nanoparticles physicochemical characteristics is mandatory as the first step in accurately elucidating their behaviour in different ecosystems. Here in this work, in house-synthesized tellurium-based nanoparticles have been fully characterized for first time by means of a multi-method approach. Once characterized, the effect of these nanoparticles on Staphylococcus aureus and Escherichia coli biofilm biomass and structure was explored and quantified for first time. Moreover, the morphological transformations of tellurium based nanoparticles within the confines of a biofilm are also highlighted. Architectural metric calculations evidenced that nanoparticles were able to reduce the biovolume of the biofilm produced for both bacteria. Interestingly, the interaction between nanoparticles and bacterial communities led to the transformation of telluriumnanoparticles from sphere to rod-shaped nanoparticles. These findings open new insights into the behaviour of a type of uncommon nanoparticles such as tellurium-based nanoparticles on microbial communities
  • Item
    Insights into the accumulation and transformation of Ch-SeNPs by Raphanus sativus and Brassica juncea: effect on essential elements uptake
    (Science of the Total Environment, 2020) Moreno Martín, Gustavo; Sanz Landaluce, Jon; León González, María Eugenia De; Madrid Albarrán, María Yolanda; Elsevier
    Selenium (Se) at very low doses has important functions for humans. Unfortunately, the low levels of Se in soils in various regions of the world have implemented the agronomic biofortification of crops by applying Se-enriched fertilizers (mainly based on selenate). Lately, the use of nanofertilizers is growing in interest as their low size reduces the amount of chemicals and minimizes nutrient losses in comparison with conventional bulk fertilizers. However, the knowledge on their fate and environmental impact is still scarce. This study aims to evaluate the biotransformation of chitosan-modified Se nanoparticles (Ch-SeNPs) as well as their effect on the metabolism of essential metals (Fe, Cu, Zn and Mo) when applied to hydroponic cultivation of R. sativus and B. juncea. In house-synthesized Ch-SeNPs were characterized in both synthesis and hydroponic culture media by transmission electron microscopy (TEM), dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The composition of one-tenth strength Hoagland's solution did not affect the size, shape and concentration in number of particles per mL of Ch-SeNPs. The plants were grown inside a box at 25 °C during the months of May–July in 2018. After a week of treatment with Ch-SeNPs, plants were harvested and divided into roots and aerial part. The biotransformation of Ch-SeNPs was evaluated through a process of enzymatic hydrolysis and subsequent analysis by HPLC-ICP-MS and HPLC-ESI-MS/MS. The results confirmed the transformation of Ch-SeNPs to seleno-amino acids: Selenomethionine (SeMet), Semethylselenocysteine (SeMetSeCys) and ɣ-glutamyl-Se-MetSeCys. Moreover, Multiple-way analysis of variance (ANOVA) and principal component analysis (PCA) showed that, regardless the plant species, Ch-SeNPs supplementation affected the absorption of Zn.