Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

In vivo quantification of volatile organoselenium compounds released by bacteria exposed to selenium with HS-SPME-GC-MS. Effect of selenite and selenium nanoparticles

Loading...
Thumbnail Image

Full text at PDC

Publication date

2021

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
Citations
Google Scholar

Citation

Moreno-Martín, G; Sanz-Landaluze, J; León-González, ME; Madrid, Y. In vivo quantification of volatile organoselenium compounds released by bacteria exposed to selenium with HS-SPME-GC-MS. Effect of selenite and selenium nanoparticles 2021, 224: 121907

Abstract

Quantification of volatile organoselenium species released by Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), after their growth in the presence of 1 and 2 mg Se⋅L-1 as both selenite and chitosan modified selenium nanoparticles (Ch-SeNPs), was achieved by the application of a method based on headspace solid-phase microextraction (HS-SPME) and in-fiber internal standardization, combined with gas chromatography coupled to mass spectrometry (GC-MS). This method consisted of an initial extraction of the released volatile organoselenium compounds on the SPME fiber, followed by the extraction of internal standard (IS), deuterated dimethyl sulfide (d6-DMS), on the same fiber before its desorption at the injection port of GC-MS. The results showed that the biotransformation of selenite and Ch-SeNPs into volatile organoselenium compounds was dependent on both the type of bacterial species and the chemical form of selenium (Se) administered. In this sense, E. coli was able to biotransform both selenite and Ch-SeNPs into dimethylselenium (DMSe) and dimethyldiselenium (DMDSe) while S. aureus, biotransformed selenite into DMSe and DMDSe and, Ch-SeNPs only into DMDSe. Additionally, the formation of a volatile mixed sulfur/selenium compound, dimethyl selenenyl sulfide (DMSeS), from Se in nanoparticulated form has been detected for the first time.

Research Projects

Organizational Units

Journal Issue

Description

Keywords

Collections