Person:
Moreno Jiménez, Florencio

Loading...
Profile Picture
First Name
Florencio
Last Name
Moreno Jiménez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Óptica y Optometría
Department
Química Orgánica
Area
Química Orgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 19
  • Item
    Circularly Polarized Luminescence from Simple Organic Molecules
    (Chemistry: a european journal, 2015) Márquez Sánchez-Carnerero, Esther María; Rodríguez Agarrabeitia, Antonia; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Muller, Gilles; Ortiz García, María Josefa; Moya Cerero, Santiago De La
    This article aims to show the identity of “circularly polarized luminescent active simple organic molecules” as a new concept in organic chemistry due to the potential interest of these molecules, as availed by the exponentially growing number of research articles related to them. In particular, it describes and highlights the interest and difficulty in developing chiral simple (small and non-aggregated) organic molecules able to emit left- or right-circularly polarized light efficiently, the efforts realized up to now to reach this challenging objective, and the most significant milestones achieved to date. General guidelines for the preparation of these interesting molecules are also presented.
  • Item
    Chiral microneedles from an achiral bis(boron dipyrromethene): spontaneous mirror symmetry breaking leading to a promising photoluminescent organic material
    (Langmuir, 2019) Gartzia-Rivero, Leire; Ray Leiva, César; Sánchez Carnerero, Esther M. Márquez; Bañuelos, Jorge; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; García Moreno, Inmacualada; Infantes, Lourdes; Méndez Martín, María Bianchi; López Arbeloa, Íñigo María
    Supramolecular self-assembly of a highly flexible and achiral meso bis(boron dipyrromethene) [bis-(BODIPY)] dye straightforwardly yields fluorescent micro-fibers, exhibiting an intriguing anisotropic photonic behavior. This performance includes the generation of chiroptical activity owing to spontaneous mirror symmetry breaking (SMSB). Repetition of several self-assembly experiments demonstrates that the involved SMSB is not stochastic but quasi deterministic in the direction of the induced chiral asymmetry. The origin of these intriguing (chiro)photonic properties is revealed by fluorescent microspectroscopy studies of individual micrometric objects, combined with X-ray diffraction elucidation of microcrystals. Such a study demonstrates that J-like excitonic coupling between bis(BODIPY) units plays a fundamental role in their supramolecular organization, leading to axial chirality. Interestingly, the photonic behavior of the obtained fibers is ruled by inherent nonradiative pathways from the involved push-pull chromophores, and mainly by the complex excitonic interactions induced by their anisotropic supramolecular organization.
  • Item
    Chiral Organic Dyes Endowed with Circularly Polarized Laser Emission
    (Journal of Physical Chemistry C, 2017) Jiménez González, Josué; Cerdán Pedraza, Luis; Moreno Jiménez, Florencio; Maroto, Beatriz Lora; García Moreno, Inmaculada; Lunkley, Jamie L.; Muller, Gilles; Moya Cerero, Santiago De La
    The direct generation of efficient, tunable, and switchable circularly polarized laser emission (CPLE) would have far-reaching implications in photonics and material sciences. In this paper, we describe the first chiral simple organic molecules (SOMs) capable of simultaneously sustaining significant chemical robustness, high fluorescence quantum yields, and circularly polarized luminescence (CPL) ellipticity levels (|glum|) comparable to those of similar CPL-SOMs. All these parameters altogether enable efficient laser emission and CPLE with ellipticity levels 2 orders of magnitude stronger than the intrinsic CPL ones.
  • Item
    Project number: 51
    Introducción al diseño de Cursos Cero para materias básicas del primer curso de Grado en Ciencias mediante enseñanza virtual
    (2017) Cuervo Rodríguez, María Rocío; García Fresnadillo, David; Moreno Jiménez, Florencio; Sánchez Arroyo, Antonio José; García Pereira, Francisco Javier; Martínez Sánchez, Juan Carlos
    Evaluar, analizar la situación de partida de los alumnos de nuevo acceso al 1º curso de Grado en Facultades de Ciencias de la UCM (Biología, Óptica y Optometría y Química), y generar las bases para diseñar un Curso 0 de una materia básica, Química.
  • Item
    Modulating ICT emission: a new strategy to manipulate the CPL sign in chiral emitters
    (Chemical Communications, 2019) Jiménez González, Josué; Moreno Jiménez, Florencio; Maroto, Beatriz Lora; Cabreros, Trevor A.; Huy, Angelenia S.; Muller, Gilles; Bañuelos Prieto, Jorge; Moya Cerero, Santiago De La
    A new strategy to manipulate the circularly polarized luminescence (CPL) handedness in chiral emitters, based on modulating the population of an emissive ICT state, is proposed. Such a strategy is particularly interesting for conformationally rigid and non-aggregating chiral organic emitters, opening up new perspectives for the development of CPL application based on organic molecules
  • Item
    N-BODIPYs Come into Play: Smart Dyes for Photonic Materials
    (Chemistry: a european journal, 2017) Ray Leiva, César; Díaz Casado, Laura; Avellanal-Zaballa, Edurne; Bañuelos Prieto, Jorge; Cerdán Pedraza, Luis; García Moreno, Inmaculada; Moreno Jiménez, Florencio; Maroto, Beatriz Lora; López Arbeloa, Íñigo María; Moya Cerero, Santiago De La
    N-BODIPYs (diaminoboron dipyrromethenes) are unveiled as a new family of BODIPY dyes with huge technological potential. Synthetic access to these systems has been gained through a judicious design focused on stabilizing the involved diaminoboron chelate. Once stabilized, the obtained N-BODIPYs retain the effective photophysical behavior exhibited by other boron-substituted BODIPYs, such as O-BODIPYs. However, key bonding features of nitrogen compared to those of oxygen (enhanced bond valence and different bond directionality) open up new possibilities forfunctionalizing BODIPYs, allowing an increase in the number of pendant moieties (from two in O-BODIPYs, up to four in N-BODIPYs) near the chromophore and, therefore, greater control of the photophysics. As a proof of concept, the following findings are discussed: (1) the low-cost and straightforward synthesis of a selected series of N-BODIPYs; (2) their outstanding photophysical properties compared to those of related effective dyes (excellent emission signatures, including fluorescence in the solid state; notable lasing capacities in the liquid phase and when doped into polymers; improved laser performance compared to the parent F-BODIPYs); (3) the versatility of the diaminoboron moiety in allowing the generation of multifunctionalized BODIPYs, permitting access to both symmetric and asymmetric dyes; (4) the capability of such versatility to finely modulate the dye photophysics towards different photonic applications, from lasing to chemosensing.
  • Item
    Circularly Polarized Luminescence by Visible-Light Absorption in a Chiral O-BODIPY Dye: Unprecedented Design of CPL Organic Molecules from Achiral Chromophores
    (Journal of the American Chemical Society, 2014) Márquez Sánchez-Carnerero, Esther María; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; Vo, Bryan G.; Muller, Gilles; Moya Cerero, Santiago De La
    Circularly polarized luminescence (CPL) in simple (small, nonaggregated, nonpolymeric) O-BODIPYs(R)-1 and (S)-1 by irradiation with visible light is first detected as proof of the ability of a new structural design to achieve CPL from inherently achiral monochromophore systems in simple organic molecules. The measured level of CPL (|glum|) in solution falls into the usual range of that obtained from other simple organic molecules (10−5−10−2range), but the latter having more complex architectures since axially chiral chromophores or multichromophore systems are usually required. The new design is based on chirally perturbing the acting achiral chromophore by orthogonally tethering a single axially chiral 1,1′-binaphtyl moiety to it. The latter does not participate as a chromophore in the light-absorption/emission phenom-enon. This simple design opens up new perspectives for the future development of new small-sized CPL organic dyes (e.g., those based on other highly luminescent achiral chromophores and/or chirally perturbing moieties), as well as for the improvement of the CPL properties of the organic molecules spanning their use in photonic applications.
  • Item
    Unprecedented induced axial chirality in a molecular BODIPY dye: strongly bisignated electronic circular dichroism in the visible region
    (Chemical Communications, 2013) Márquez Sánchez-Carnerero, Esther María; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Bañuelos Prieto, Jorge; Arbeloa, Teresa; López Arbeloa, Íñigo María; Ortiz García, María Josefa; Moya Cerero, Santiago De La
    Enantiomeric bis(BODIPYs) 1a and 1b exhibit strong bisignated ECD due to the formation of a stable helical conformation with induced axial chirality, which allows efficient excito coupling of the BODIPY chromophores in the Vis region.
  • Item
    Bis(haloBODIPYs) with Labile Helicity: Valuable Simple Organic Molecules That Enable Circularly Polarized Luminescence
    (Chemistry: a european journal, 2016) Ray Leiva, César; Márquez Sánchez-Carnerero, Esther María; Moreno Jiménez, Florencio; Lora Maroto, Beatriz; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa; López Arbeloa, Íñigo María; Bañuelos Prieto, Jorge; Cohovi, Komlan D.; Lunkley, jamie L.; Muller, Gilles; Moya Cerero, Santiago De La
    Simple organic molecules (SOM) based on bis(haloBODIPY) are shown to enable circularly polarized luminescence (CPL), giving rise to a new structural design for technologically valuable CPL-SOMs. The established design comprises together synthetic accessibility, labile helicity, possibility of reversing the handedness of the circularly polarized emission, and reactive functional groups, making it unique and attractive as advantageous platform for the development of smart CPL-SOMs.
  • Item
    Exploring N-BODIPYs as Privileged Scaffolds to Build Off/On Fluorescent Sensors by PET
    (Proceedings, 2019) Ray Leiva, César; Schad, Christopher; Avellanal-Zaballa, Edurne; Moreno Jiménez, Florencio; Bañuelos, Jorge; Maroto, Beatriz Lora; Moya Cerero, Santiago De La
    A new N-boron dipyrromethene (N-BODIPY) substituted with a crown ether moiety has been synthesized by reaction of an F-BODIPY with a crown-ether-substituted bis(sulfonamide). The workability of this N-BODIPY as an off/on sensor for cations by modulation of a photoinduced electron transfer (PET) is explored. The new N-BODIPY demonstrates the possibilities of functionalization of these still unexplored but promising dyes.