Person:
Gutiérrez Fernández, Juan Carlos

Loading...
Profile Picture
First Name
Juan Carlos
Last Name
Gutiérrez Fernández
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Genética, Fisiología y Microbiología
Area
Microbiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 17
  • Item
    Tetrahymena Glutathione peroxidase family: a comparative analysis of these antioxidant enzymes and differential gene expression to metals and Oxidizing Agents
    (Microorganisms, 2020) Cubas-Gaona, Liliana L.; Francisco Martínez, Patricia de; Martín González, Ana María; Gutiérrez Fernández, Juan Carlos
    In the present work, an extensive analysis of the putative glutathione peroxidases (GPx) of the eukaryotic microorganism model Tetrahymena thermophila is carried out. A comparative analysis with GPx present in other Tetrahymena species and other very taxonomically diverse ciliates is also performed. A majority of ciliate GPx have replaced the selenocysteine (Sec) by Cys in its catalytic center, so they can be considered as phospholipid hydroperoxide glutathione peroxidases (PHGPx). Selenocysteine insertion sequence (SECIS) elements have been detected in several ciliate GPx that do not incorporate Sec in their amino acid sequences, and conversely, in other ciliate GPx with Sec, no SECIS elements are detected. These anomalies are analyzed and discussed. From the phylogenetic analysis using the ciliate GPx amino acid sequences, the existence of extensive intraand interspecific gene duplications that produced multiple GPx isoforms in each species is inferred. The ancestral character of the selenoproteins is also corroborated. The analysis by qRT-PCR of six selected T. thermophila GPx genes has shown a quantitative differential expression between them, depending on the stressor (oxidizing agents, apoptotic inducer or metals) and the time of exposure.
  • Item
    Structural and Functional Diversity of Microbial Metallothionein Genes
    (Microbial Diversity in the Genomic Era, 2018) Gutiérrez Fernández, Juan Carlos; Francisco Martínez, Patricia de; Amaro Torres, Francisco; Díaz, Silvia; Martín González, Ana María; Das, Surajit; Dash, Hirak Ranjan
    In the present review, we discussed the concept of metallothionein (MT) and analyzed the structural and functional diversity of microbial MTs, grouping them into three main groups; bacteria, fungi, and protists. Structural diversity is analyzed based on the primary, secondary, and/or tertiary structure of the proteins. Their ability to bind different metals is also analyzed in each microbial group. An in silico and phylogenetic analysis of MT sequences from the main microbial groups has been carried out. The wide functional diversity of these proteins and the regulation of the MT gene expression are also discussed. The presence of several paralog genes in many microorganisms provides a coordinated and multiple response against different types of environmental stressors. Likewise, the main possible biotechnological applications of these proteins are explored, such as molecular tools to design biosensors for evaluating metal contamination and in metal bioremediation.
  • Item
    MicroRNAs in Tetrahymena thermophila: an epigenetic regulatory mechanism in the response to cadmium stress
    (Microbiological Research, 2023) Gonzalez David; Amaro Torres, Francisco; Gutiérrez Fernández, Juan Carlos
    Among the epigenetic mechanisms based on non-coding RNA are microRNAs (miRNAs) that are involved in the post-transcriptional regulation of mRNAs. In many organisms, the expression of genes involved in the cellular response to biotic or abiotic stress depends on the regulation, generally inhibitory, performed by miRNAs. For the first time in the eukaryotic microorganism (ciliate-model) Tetrahymena thermophila, miRNAs involved in the posttranscriptional regulation of transcripts linked to the response to cadmium have been isolated and analyzed. Forty de novo miRNAs (we named tte-miRNAs) have been isolated from control and Cd-treated populations (1 or 24 h exposures). An exhaustive comparative analysis of the features of these mature tte-miRNAs and their precursor sequences (pre-tte-miRNAs) confirms that they are true miRNAs. In addition to the three types of miRNA isoforms previously described in other organisms, two new types are also described among the ttemiRNAs studied. A certain percentage of the pre-tte-miRNA sequences are in introns from genes with many introns, and have been defined as 5′, 3′-tailed mirtrons. A qRT-PCR analysis of selected tte-miRNAs together with some of their targets has validated them. Cd is one of the most toxic metals for the cell, which must defend itself against its toxicity by various mechanisms, such as expulsion by membrane pumps, chelation by metallothioneins, among others. Like other toxic metals, Cd also causes a well-known series of cellular effects such as intense proteotoxicity. Many of the targets that are regulated by the tte-miRNAs are transcripts encoding proteins that fit into these defense mechanisms and toxic metal effects.
  • Item
    Metallic Nanoparticles—friends or foes in the battle against antibiotic-Resistant Bacteria?
    (Microorganisms, 2021) Amaro Torres, Francisco; Morón García, Álvaro; Díaz del Toro, Silvia; Martín González, Ana María; Gutiérrez Fernández, Juan Carlos
    The rapid spread of antibiotic resistances among bacteria demands novel strategies for infection control, and metallic nanoparticles appear as promising tools because of their unique size and tunable properties that allow their antibacterial effects to be maximized. Furthermore, their diverse mechanisms of action towards multiple cell components have suggested that bacteria could not easily develop resistance against nanoparticles. However, research published over the last decade has proven that bacteria can indeed evolve stable resistance mechanisms upon continuous exposure to metallic nanoparticles. In this review, we summarize the currently known individual and collective strategies employed by bacteria to cope with metallic nanoparticles. Importantly, we also discuss the adverse side effects that bacterial exposure to nanoparticles may have on antibiotic resistance dissemination and that might constitute a challenge for the implementation of nanoparticles as antibacterial agents. Overall, studies discussed in this review point out that careful management of these very promising antimicrobials is necessary to preserve their efficacy for infection control.
  • Item
    High resistance of Tetrahymena thermophila to paraquat: Mitochondrial alterations, oxidative stress and antioxidant genes expression
    (Chemosphere, 2016) Díaz del Toro, Silvia; Martín González, Ana María; Cubas, Liliana; Ortega, Ruth; Amaro, Francisco; Rodríguez-Martín, Daniel; Gutiérrez Fernández, Juan Carlos
  • Item
    Stress and Protists: No life without stress
    (European Journal of Protistology, 2016) Slaveykova, Vera; Sonntag, Bettina; Gutiérrez Fernández, Juan Carlos
    We report a summary of the symposium “Stress and Protists: No life without stress”, which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation – induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics.
  • Item
    Arsenate and arsenite differential toxicity in Tetrahymena thermophila
    (Journal of Hazardous Materials, 2022) Rodriguez Martín, Daniel; Murciano Cespedosa, Antonio; Herráiz Moreno, Marta; De Francisco Martínez, Patricia; Amaro Torres, Francisco; Gutiérrez Fernández, Juan Carlos; Martín-González, Ana María; Díaz Del Toro, Silvia
    A comparative analysis of toxicities of both arsenic forms (arsenite and arsenate) in the model eukaryotic microorganism Tetrahymena thermophila (ciliate protozoa) has shown the presence of various detoxification mechanisms and cellular effects comparable to those of animal cells under arsenic stress. In the wild type strain SB1969 arsenate is almost 2.5 times more toxic than arsenite. According to the concentration addition model used in binary metallic mixtures their toxicities show an additive effect. Using fluorescent assays and flow cytometry, it has been detected that As(V) generates elevated levels of ROS/RNS compared to As(III). Both produce the same levels of superoxide anion, but As(V) also causes greater increases in hydrogen peroxide and peroxynitrite. The mitochondrial membrane potential is affected by both As(V) and As(III), and electron microscopy has also revealed that mitochondria are the main target of both arsenic ionic forms. Fusion/fission and swelling mitochondrial and mitophagy, together with macroautophagy, vacuolization and mucocyst extruction are mainly associated to As(V) toxicity, while As(III) induces an extensive lipid metabolism dysfunction (adipotropic effect). Quantitative RT-PCR analysis of some genes encoding antioxidant proteins or enzymes has shown that glutathione and thioredoxin metabolisms are involved in the response to arsenic stress. Likewise, the function of metallothioneins seems to be crucial in arsenic detoxification processes, after using both metallothionein knockout and knockdown strains and cells overexpressing metallothionein genes from this ciliate. The analysis of the differential toxicity of As(III) and As(V) shown in this study provides cytological and molecular tools to be used as biomarkers for each of the two arsenic ionic forms.
  • Item
    Quantitative proteomic analyses of a Pb-adapted Tetrahymena thermophila strain reveal the cellular strategy to Pb(II) stress including lead biomineralization to chloropyromorphite
    (Science of the Total Environment, 2023) De Francisco Martínez, Patricia; Amaro Torres, Francisco; Martín González, Ana María; Aurelio Serrano; Gutiérrez Fernández, Juan Carlos
    A strain of the protozoan ciliate Tetrahymena thermophila adapted to increasing Pb(II) concentrations over two years has shown that one of the resistance mechanisms to this extreme metal stress is the lead biomineralization to chloropyromorphite, one of the most stable minerals in the earth's crust. Several techniques such as microanalysis coupled to transmission and scanning electron microscopy (X-Ray Energy Disperse Spectroscopy), fluorescence microscopy and X-ray power diffraction analysis have revealed the presence of chloropyromorphite as crystalline aggregates of nano-globular structure, together with the presence of other secondary lead minerals. This is the first time that the existence of this type of biomineralization in a ciliate protozoan is described. The Pb(II) bioremediation capacity of this strain has shown that it can remove >90 % of the toxic soluble lead from the medium. A quantitative proteomic analysis of this strain has revealed the main molecular-physiological elements involved in adaptation to Pb(II) stress: increased activity of proteolytic systems against lead proteotoxicity, occurrence of metallothioneins to immobilize Pb(II) ions, antioxidant enzymes to mitigate oxidative stress, and an intense vesicular trafficking presumably involved in the formation of vacuoles where pyromorphite accumulates and is subsequently excreted, together with an enhanced energy metabolism. As a conclusion, all these results have been compiled into an integrated model that could explain the eukaryotic cellular response to extreme lead stress.
  • Item
    AP-1 (bZIP) Transcription Factors as Potential Regulators of Metallothionein Gene Expression in Tetrahymena thermophila
    (Frontiers in Genetics, 2018) Francisco Martínez, Patricia de; Amaro Torres, Francisco; Martín González, Ana María; Gutiérrez Fernández, Juan Carlos
    Metallothioneins (MT) are multi-stress proteins mainly involved in metal detoxification. MT gene expression is normally induced by a broad variety of stimulus and its gene expression regulation mainly occurs at a transcriptional level. Conserved motifs in the Tetrahymena thermophila MT promoters have been described. These motifs show a consensus sequence very similar to AP-1 sites, and bZIP type transcription factors might participate in the MT gene expression regulation. In this research work, we characterize four AP-1 transcription factors in each of four different analyzed Tetrahymena species, detecting a high conservation among them. Each AP-1 molecule has its counterpart in the other three Tetrahymena species. A comparative qRT-PCR analysis of these AP-1 genes have been carried out in different T. thermophila strains (including metal-adapted, knockout and/or knockdown strains among others), and under different metal-stress conditions (1 or 24 h Cd2+, Cu2+, or Pb2+ treatments). The possible interaction of these transcription factors with the conserved AP-1 motifs present in MT promoters has been corroborated by protein-DNA interaction experiments. Certain connection between the expression patterns of the bZIP and MT genes seems to exist. For the first time, and based on our findings, a possible gene expression regulation model including both AP-1 transcription factors and MT genes from the ciliate T. thermophila has been elaborated.
  • Item
    Autophagy and lipid droplets are a defense mechanism against toxic copper oxide nanotubes in the eukaryotic microbial model Tetrahymena thermophila
    (Science of the Total Environment, 2022) Morón García, Álvaro; Martín González, Ana María; Díaz del Toro, Silvia; Gutiérrez Fernández, Juan Carlos; Amaro Torres, Francisco
    The widespread use of inorganic nanomaterials of anthropogenic origin has significantly increased in the last decade, being now considered as emerging pollutants. This makes it necessary to carry out studies to further understand their toxicity and interactions with cells. In the present work we analyzed the toxicity of CuO nanotubes (CuONT) in the ciliate Tetrahymena thermophila, a eukaryotic unicellular model with animal biology. CuONT exposure rapidly induced ROS generation in the cell leading to oxidative stress and upregulation of genes encoding antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase), metal-chelating metallothioneins and cytochrome P450 monooxygenases. Comet assays and overexpression of genes involved in DNA repair confirmed oxidative DNA damage in CuONT-treated cells. Remarkably, both electron and fluorescent microscopy revealed numerous lipid droplets and autophagosomes containing CuONT aggregates and damaged mitochondria, indicating activation of macroautophagy, which was further confirmed by a dramatic upregulation of ATG (AuTophaGy related) genes. Treatment with autophagy inhibitors significantly increased CuONT toxicity, evidencing the protective role of autophagy towards CuONTinduced damage. Moreover, increased formation of lipid droplets appears as an additional mechanism of CuONT detoxification. Based on these results, we present a hypothetical scenario summarizing how T. thermophila responds to CuONT toxicity. This study corroborates the use of this ciliate as an excellent eukaryotic microbial model for analyzing the cellular response to stress caused by toxic metal nanoparticles.