Person:
Cañadas Benito, Olga

Loading...
Profile Picture
First Name
Olga
Last Name
Cañadas Benito
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 10 of 25
  • Item
    Surfactant protein A forms extensive lattice-like structures on 1,2-dipalmitoylphosphatidylcholine/rough-lipopolysaccharide-mixed monolayers
    (Biophysical Journal, 2007) García-Verdugo, I.; Cañadas Benito, Olga; Taneva, S.G.; Keough, K.M.; Casals, C
    Due to the inhalation of airborne particles containing bacterial lipopolysaccharide (LPS), these molecules might incorporate into the 1,2-dipalmitoylphosphatidylcholine (DPPC)-rich monolayer and interact with surfactant protein A (SP-A), the major surfactant protein component involved in host defense. In this study, epifluorescence microscopy combined with a surface balance was used to examine the interaction of SP-A with mixed monolayers of DPPC/rough LPS (Re-LPS). Binary monolayers of Re-LPS plus DPPC showed negative deviations from ideal behavior of the mean areas in the films consistent with partial miscibility and attractive interaction between the lipids. This interaction resulted in rearrangement and reduction of the size of DPPC-rich solid domains in DPPC/Re-LPS monolayers. The adsorption of SP-A to these monolayers caused expansion in the lipid molecular areas. SP-A interacted strongly with Re-LPS and promoted the formation of DPPC-rich solid domains. Fluorescently labeled Texas red-SP-A accumulated at the fluid-solid boundary regions and formed networks of interconnected filaments in the fluid phase of DPPC/Re-LPS monolayers in a Ca21-independent manner. These lattice-like structures were also observed when TR-SP-A interacted with lipid A monolayers. These novel results deepen our understanding of the specific interaction of SP-A with the lipid A moiety of bacterial LPS
  • Item
    Characterization of liposomal tacrolimus in lung surfactant-like phospholipids and evaluation of its immunosuppressive activity.
    (Biochemistry, 2004) Cañadas Benito, Olga; Guerrero, R; García-Cañero, R; Orellana Moraleda, Guillermo; Menéndez, M; Casals Carro, María Cristina
    Tacrolimus (FK506) is a hydrophobic immunosuppressive agent that rapidly penetrates the plasmatic membrane and inhibits the signal transduction cascade of T lymphocytes. The objective of this study was the characterization of liposomal FK506 with surfactant-like phospholipids to be administered intratracheally after lung transplantation or in inflammatory lung diseases. We evaluated the optimal incorporation of FK506 in dipalmitoylphosphatidylcholine (DPPC) and DPPC/1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) monolayers and bilayers and the effects of FK506 on the physical properties of DPPC and DPPC/POPG (8:2 w/w) vesicles. In addition, we assessed the immunosuppressive effects of surfactant-like phospholipid vesicles containing different amounts of FK506 on T-cell proliferation and interleukin 2 production. From surface pressure measurements of FK506/DPPC and FK506/DPPC/POPG mixed monolayers, we determined that FK506 was embedded into these monolayers up to an FK506 concentration of about 0.4 mol %. Beyond this concentration, FK506 was not quantitatively incorporated into the monolayer, suggesting possible concentration-dependent aggregation of tacrolimus. The incorporation of FK506 into DPPC monolayers, at concentrations
  • Item
    Differential Scanning Calorimetry of Protein–Lipid Interactions
    (Lipid-Protein Interactions: Methods and Protocols, 2019) Cañadas Benito, Olga; Casals Carro, Cristina; Kleinschmidt, Jörg H.
    Differential scanning calorimetry (DSC) is a highly sensitive nonperturbing technique used for studying the thermodynamic properties of thermally induced transitions. Since these properties might be affected by ligand binding, DSC is particularly useful for the characterization of protein interactions with biomimetic membranes. The advantages of this technique over other methods consist in the direct measurement of intrinsic thermal properties of the samples, requiring no chemical modifications or extrinsic probes. This chapter describes the basic theory of DSC and provides the reader with an understanding of the capabilities of DSC instrumentation and the type of information that can be achieved from DSC studies of lipid-protein interactions. In particular, the chapter provides a detailed analysis of DSC data to assess the effects of proteins on biomimetic membranes.
  • Item
    Insights into the mechanisms of interaction between inhalable lipid-polymer hybrid nanoparticles and pulmonary surfactant
    (Journal of Colloid and Interface Science, 2022) Xu, You; Parra-Ortiz, Elisa; Wan, Feng; Cañadas Benito, Olga; García Álvarez, María Begoña; Thakur, Aneesh; Franzyk, Henrik; Pérez Gil, Jesús; Malmsten, Martin; Foged, Camilla
    Pulmonary delivery of small interfering RNA (siRNA) using nanoparticle-based delivery systems is promising for local treatment of respiratory diseases. We designed dry powder inhaler formulations of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) with aerosolization properties optimized for inhalation therapy. Interactions between LPNs and pulmonary surfactant (PS) determine the fate of inhaled LPNs, but interaction mechanisms are unknown. Here we used surface-sensitive techniques to study how physicochemical properties and pathological microenvironments influence interactions between siRNA-loaded LPNs and supported PS layers. PS was deposited on SiO2 surfaces as single bilayer or multilayers and characterized using quartz crystal microbalance with dissipation monitoring and Fourier-transform infrared spectroscopy with attenuated total reflection. Immobilization of PS as multilayers, resembling the structural PS organization in the alveolar subphase, effectively reduced the relative importance of interactions between PS and the underlying surface. However, the binding affinity between PS and LPNs was identical in the two models. The physicochemical LPN properties influenced the translocation pathways and retention time of LPNs. Membrane fluidity and electrostatic interactions were decisive for the interaction strength between LPNs and PS. Experimental conditions reflecting pathological microenvironments promoted LPN deposition. Hence, these results shed new light on design criteria for LPN transport through the air–blood barrier.
  • Item
    Role of lipid ordered/disordered phase coexistence in pulmonary surfactant function
    (Biochimica et Biophysica Acta (BBA) - Biomembranes, 2012) Casals Carro, María Cristina; Cañadas Benito, Olga
    The respiratory epithelium has evolved to produce a complicated network of extracellular membranes that are essential for breathing and, ultimately, survival. Surfactant membranes form a stable monolayer at the air-liquid interface with bilayer structures attached to it. By reducing the surface tension at the air-liquid interface, surfactant stabilizes the lung against collapse and facilitates inflation. The special composition of surfactant membranes results in the coexistence of two distinct micrometer-sized ordered/disordered phases maintained up to physiological temperatures. Phase coexistence might facilitate monolayer folding to form three-dimensional structures during exhalation and hence allow the film to attain minimal surface tension. These folded structures may act as a membrane reserve and attenuate the increase in membrane tension during inspiration. The present review summarizes what is known of ordered/disordered lipid phase coexistence in lung surfactant, paying attention to the possible role played by domain boundaries in the monolayer-to-multilayer transition, and the correlations of biophysical inactivation of pulmonary surfactant with alterations in phase coexistence.
  • Item
    Delayed alveolar clearance of nanoparticles through control of coating composition and interaction with lung surfactant protein A
    (Materials Science & Engineering C, 2021) Carregal Romero, Susana; Groult, Hugo; Cañadas Benito, Olga; A-Gonzalez, Noelia; Lechuga Vieco, Ana Victoria; García Fojeda, Belén; Herranz, Fernando; Pellico, Juan; Hidalgo, Andrés; Casals, Cristina; Ruiz Cabello, Jesús
    The coating composition of nanomedicines is one of the main features in determining the medicines' fate, clearance, and immunoresponse in the body. To highlight the coatings' impact in pulmonary administration, two micellar superparamagnetic iron oxide nanoparticles (SPION) were compared. These nanoparticles are similar in size and charge but have different coatings: either phosphatidylcholine (PC-SPION) or bovine serum albumin (BSA-SPION). The aim of the study was to increase the understanding of the nano-bio interaction with the cellular and non-cellular components of the lung and underline valuable coatings either for local lung-targeted drug delivery in theranostic application or patient-friendly route systemic administration. PC-SPION and BSA-SPION were deposited in the alveoli by in vivo instillation and, despite the complexity of imaging the lung, SPION were macroscopically visualized by MRI. Impressively, PC-SPION were retained within the lungs for at least a week, while BSA-SPION were cleared more rapidly. The different lung residence times were confirmed by histological analysis and supported by a flow cytometry analysis of the SPION interactions with different myeloid cell populations. To further comprehend the way in which these nanoformulations interact with lung components at the molecular level, we used fluorescence spectroscopy, turbidity measurements, and dynamic light scattering to evaluate the interactions of the two SPION with surfactant protein A (SP-A), a key protein in setting up the nanoparticle behavior in the alveolar fluid. We found that SP-A induced aggregation of PC-SPION, but not BSA-SPION, which likely caused PC-SPION retention in the lung without inducing inflammation. In conclusion, the two SPION show different outcomes from interaction with SP-A leading to distinctive fate in the lung. PC-SPION hold great promise as imaging and theranostic agents when prolonged pulmonary drug delivery is required.
  • Item
    Conserved bacterial-binding peptides of the scavenger-like human lymphocyte receptor CD6 protect from mouse experimental sepsis
    (Frontiers in Immunology, 2018) Martínez Florensa, Mario; Català, Cristina; Velasco de Andrés, María; Cañadas Benito, Olga; Fraile Ágreda, Víctor; Casadó Llombart, Sergi; Armiger Borràs, Noelia; Consuegra Fernández, Marta; Casals Carro, María Cristina; Lozano, Francisco; Kishore, Uday
    Sepsis is an unmet clinical need constituting one of the most important causes of death worldwide, a fact aggravated by the appearance of multidrug resistant strains due to indiscriminate use of antibiotics. Host innate immune receptors involved in pathogen-associated molecular patterns (PAMPs) recognition represent a source of broad-spectrum therapies alternative or adjunctive to antibiotics. Among the few members of the ancient and highly conserved scavenger receptor cysteine-rich superfamily (SRCR-SF) sharing bacterial-binding properties there is CD6, a lymphocyte-specific surface receptor. Here, we analyze the bacterial-binding properties of three conserved short peptides (11-mer) mapping at extracellular SRCR domains of human CD6 (CD6.PD1, GTVEVRLEASW; CD6.PD2 GRVEMLEHGEW; and CD6.PD3, GQVEVHFRGVW). All peptides show high binding affinity for PAMPs from Gram-negative (lipopolysaccharide; Kd from 3.5 to 3,000 nM) and Gram-positive (lipoteichoic acid; Kd from 36 to 680 nM) bacteria. The CD6.PD3 peptide possesses broad bacterial-agglutination properties and improved survival of mice undergoing polymicrobial sepsis in a dose- and time-dependent manner. Accordingly, CD6.PD3 triggers a decrease in serum levels of both pro-inflammatory cytokines and bacterial load. Interestingly, CD6.PD3 shows additive survival effects on septic mice when combined with Imipenem/Cilastatin. These results illustrate the therapeutic potential of peptides retaining the bacterial-binding properties of native CD6.
  • Item
    Bacterial lipopolysaccharide promotes destabilization of lung surfactant-like films
    (Biophysical Journal, 2011) Cañadas Benito, Olga; Keough, Kevin M.W.; Casals Carro, María Cristina
    The airspaces are lined with a dipalmitoylphosphatidylcholine (DPPC)-rich film called pulmonary surfactant, which is named for its ability to maintain normal respiratory mechanics by reducing surface tension at the air-liquid interface. Inhaled airborne particles containing bacterial lipopolysaccharide (LPS) may incorporate into the surfactant monolayer. In this study, we evaluated the effect of smooth LPS (S-LPS), containing the entire core oligosaccharide region and the O-antigen, on the biophysical properties of lung surfactant-like films composed of either DPPC or DPPC/palmitoyloleoylphosphatidylglycerol (POPG)/palmitic acid (PA) (28:9:5.6, w/w/w). Our results show that low amounts of S-LPS fluidized DPPC monolayers, as demonstrated by fluorescence microscopy and changes in the compressibility modulus. This promoted early collapse and prevented the attainment of high surface pressures. These destabilizing effects could not be relieved by repeated compression-expansion cycles. Similar effects were observed with surfactant-like films composed of DPPC/POPG/PA. On the other hand, the interaction of SP-A, a surfactant membrane-associated alveolar protein that also binds to LPS, with surfactant-like films containing S-LPS increased monolayer destabilization due to the extraction of lipid molecules from the monolayer, leading to the dissolution of monolayer material in the aqueous subphase. This suggests that SP-A may act as an LPS scavenger.
  • Item
    Project number: 306
    La comunidad del anillo IGGIA: construyendo redes de mentoría en Ingeniería Genética mediante gamificación, internacionalización y accesibilidad
    (2022) Sánchez Torralba, Antonio; Benítez Prian, Mario; Blázquez Ortiz, Cristina; Bruñén Alfaro, Francisco; Cañadas Benito, Olga; García de la Camacha Selgas, Nuria; García-Fojeda García-Valdecasas, Belén; González Miranda, David; Guevara Acosta, Govinda; López Conejo, María Teresa; Lorente Pérez, María del Mar; Mateo Mendoza, Jorge Mario; Nogués Vera, Laura; Raisman, Andrea; Ranz Valdecasa, María Regina; Ruiz Ortega, Marta; Sánchez-Escalonilla Relea, Jose Luis; Sánchez Velasco, Teresa; Toledo Marcos, Juan; Velasco Díez, Guillermo; Navarro Llorens, Juana María
  • Item
    Project number: 163
    The Phantom Menace: Cómo salvar el mundo de una pandemia mediante Ingeniería Genética cooperativa
    (2021) Navarro LLorens, Juana María; Baldanta Callejo, Sara; Bénitez Prian, Mario; Blázquez Ortiz, Cristina; Bruñen Alfaro, Francisco; Cañadas Benito, Olga; Chinarro Sánchez, Adrián; García de la Camacha Selgas, Nuria; García-Fojeda García-Valdecasas, María Belén; Guevara Acosta, Flor Govinda; Leaño Hinojosa, Ariana; López Conejo, Maria Teresa; Lorente Pérez, Maria del Mar; Nogués Vera, Laura; Penalba Iglesias, Diana; Raisman, Andrea; Ranz Valdecasa, Maria Regina; Ruiz Ortega, Marta; Sánchez-Escalonilla Relea, Jose luis; Velasco Díez, Guillermo; Sánchez Torralba, Antonio
    El año pasado se llevó a cabo un proyecto de innovación (PIMCD-2019 174) basado en el modelo pedagógico de la clase invertida o “Flipped Classroom” y en el juego de mesa PANDEMIC (ASMODEE IBÉRICA). Brevemente, este proyecto consistió en una propuesta didáctica sobre los contenidos de FIGG en el que tomando como partida un entorno lúdico, los alumnos de FIGG en equipos preparaban contenidos y reforzaban conocimientos adquiridos en clase. Para llevarlo a cabo, a los alumnos se les planteaba una hipotética situación en la que cuatro enfermedades mortales aparecen en la tierra. Los alumnos divididos en equipos de 5 personas, deben cooperar desarrollando una serie de acciones que les permitan ir conociendo a qué patógeno se enfrentan y desarrollar herramientas que les permita controlar la epidemia dentro de un tiempo dado. Así cada equipo debe frenar el avance de las infecciones y a la vez encontrar una cura para la misma. Curiosamente, todo este escenario fue planteado antes de que la crisis del COVID-19 impactara en nuestra sociedad. En cualquier caso, la situación vivida en los últimos meses ha motivado a los estudiantes de FIGG por lo que en su mayor parte han participado en su desarrollo de manera entusiasta. En este nuevo proyecto, hemos tomado como base el proyecto del curso pasado, pero introduciendo algunos elementos innovadores. Entre estas innovaciones destaca la incorporación de dos alumnos por grupo de FIGG que ya lo hubieran realizado en la edición pasada por cada uno de los grupos de FIGG como mentores.