Person:
Cañadas Benito, Olga

Loading...
Profile Picture
First Name
Olga
Last Name
Cañadas Benito
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Pulmonary surfactant protein A-mediated enrichment of surface-decorated polymeric nanoparticles in alveolar macrophages
    (Molecular Pharmaceutics, 2016) Ruge, Christian A.; Hillaireau, Hervé; Grabowski, Nadège; Beck-Broichsitter, Mortiz; Cañadas Benito, Olga; Tsapis, Nicolas; Casals Carro, María Cristina; Nicolas, Julien; Fattal, Elias
    Surfactant protein A (SP-A), a lung anti-infective protein, is a lectin with affinity for sugars found on fungal and micrococcal surfaces such as mannose. We synthesized a mannosylated poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) copolymer and used it to produce nanoparticles with a polyester (PLGA/PLA) core and a PEG shell decorated with mannose residues, designed to be strongly associated with SP-A for an increased uptake by alveolar macrophages. Nanoparticles made of the copolymers were obtained by nanoprecipitation and displayed a size of around 140 nm. The presence of mannose on the surface was demonstrated by zeta potential changes according to pH and by a strong aggregation in the presence of concanavalin A. Mannosylated nanoparticles bound to SP-A as demonstrated by dynamic light scattering and transmission electron microscopy. The association with SP-A increased nanoparticle uptake by THP-1 macrophages in vitro. In vivo experiments demonstrated that after intratracheal administration of nanoparticles with or without SP-A, SP-A-coated mannosylated nanoparticles were internalized by alveolar macrophages in greater proportion than SP-A-coated nonmannosylated nanoparticles. The data demonstrate for the first time that the pool of nanoparticles available to lung cells can be changed after surface modification, using a biomimetic approach.
  • Item
    Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A
    (Nanomedicine: Nanotechnology, Biology and Medicine, 2011) Ruge, Christian Arnold; Kirch, Julian; Cañadas Benito, Olga; Schneider, Marc; Pérez Gil, Jesús; Schaefer, Ulrich Friedrich; Casals Carro, María Cristina; Lehr, Claus Michael
    Understanding the bio-nano interactions in the lungs upon the inhalation of nanoparticles is a major challenge in both pulmonary nanomedicine and nanotoxicology. To investigate the effect of pulmonary surfactant protein A (SP-A) on the interaction between nanoparticles and alveolar macrophages, we used magnetite nanoparticles (110-180 nm in diameter) coated with different polymers (starch, carboxymethyldextran, chitosan, poly-maleic-oleic acid, phosphatidylcholine). Cellular binding and uptake of nanoparticles by alveolar macrophages was increased for nanoparticles treated with SP-A, whereas albumin, the prevailing protein in plasma, led to a significant decrease. A significantly different adsorption pattern of SP-A, compared to albumin was found for these five different nanomaterials. This study provides evidence that after inhalation of nanoparticles, a different protein coating and thus different biological behavior may result compared to direct administration to the bloodstream