Person:
De Frutos Lucas, Jaisalmer

Loading...
Profile Picture
First Name
Jaisalmer
Last Name
De Frutos Lucas
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Psicología
Department
Psicología Experimental, Procesos Cognitivos y Logopedia
Area
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 10 of 11
  • Item
    Age and APOE genotype affect the relationship between objectively measured physical activity and power in the alpha band, a marker of brain disease
    (Alzheimer's Research & Therapy, 2020) De Frutos Lucas, Jaisalmer; Cuesta Prieto, Pablo; Ramírez Toraño, Federico; Nebreda Pérez, Alberto; Cuadrado Soto, Esther; Peral Suárez, África; López Sanz, David; Bruña Fernández, Ricardo; Marcos-de Pedro, Silvia; Delgado Losada, María Luisa; López Sobaler, Ana María; Rodríguez Rojo, Inmaculada Concepción; Barabash Bustelo, Ana; Serrano Rodríguez, Juan Manuel; Laws, Simon M.; Marcos Dolado, Alberto; López Sánchez, Ramón; Brown, Belinda M.; Maestu Unturbe, Fernando
    BACKGROUND: Electrophysiological studies show that reductions in power within the alpha band are associated with the Alzheimer’s disease (AD) continuum. Physical activity (PA) is a protective factor that has proved to reduce AD risk and pathological brain burden. Previous research has confirmed that exercise increases power in the alpha range. However, little is known regarding whether other non-modifiable risk factors for AD, such as increased age or APOE ε4 carriage, alter the association between PA and power in the alpha band. METHODS: The relationship between PA and alpha band power was examined in a sample of 113 healthy adults using magnetoencephalography. Additionally, we explored whether ε4 carriage and age modulate this association. The correlations between alpha power and gray matter volumes and cognition were also investigated. RESULTS: We detected a parieto-occipital cluster in which PA positively correlated with alpha power. The association between PA and alpha power remained following stratification of the cohort by genotype. Younger and older adults were investigated separately, and only younger adults exhibited a positive relationship between PA and alpha power. Interestingly, when four groups were created based on age (younger-older adult) and APOE (E3/E3-E3/E4), only younger E3/E3 (least predicted risk) and older E3/E4 (greatest predicted risk) had associations between greater alpha power and higher PA. Among older E3/E4, greater alpha power in these regions was associated with improved memory and preserved brain structure. CONCLUSION: PA could protect against the slowing of brain activity that characterizes the AD continuum, where it is of benefit for all individuals, especially E3/E4 older adults.
  • Item
    BDNF Val66Met polymorphism and gamma band disruption in resting state brain functional connectivity: A magnetoencephalography study in cognitively intact older females
    (Frontiers in Neuroscience, 2018) Rodríguez Rojo, Inmaculada Concepción; Cuesta Prieto, Pablo; López García, María Eugenia; De Frutos Lucas, Jaisalmer; Bruña Fernández, Ricardo; Pereda de Pablo, Ernesto; Barabash Bustelo, Ana; Montejo, Pedro; Montenegro Peña, María Mercedes; Marcos Dolado, Alberto; López-Higes, Ramón; Fernández Lucas, Alberto Amable; Maestu Unturbe, Fernando
    The pathophysiological processes undermining brain functioning decades before the onset of the clinical symptoms associated with dementia are still not well understood. Several heritability studies have reported that the Brain Derived Neurotrophic Factor (BDNF) Val66Met genetic polymorphism could contribute to the acceleration of cognitive decline in aging. This mutation may affect brain functional connectivity (FC), especially in those who are carriers of the BDNF Met allele. The aim of this work was to explore the influence of the BDNF Val66Met polymorphism in whole brain eyes-closed, resting-state magnetoencephalography (MEG) FC in a sample of 36 cognitively intact (CI) older females. All of them were ε3ε3 homozygotes for the apolipoprotein E (APOE) gene and were divided into two subgroups according to the presence of the Met allele: Val/Met group (n = 16) and Val/Val group (n = 20). They did not differ in age, years of education, Mini-Mental State Examination scores, or normalized hippocampal volumes. Our results showed reduced antero-posterior gamma band FC within the Val/Met genetic risk group, which may be caused by a GABAergic network impairment. Despite the lack of cognitive decline, these results might suggest a selective brain network vulnerability due to the carriage of the BDNF Met allele, which is linked to a potential progression to dementia. This neurophysiological signature, as tracked with MEG FC, indicates that age-related brain functioning changes could be mediated by the influence of particular genetic risk factors.
  • Item
    Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: Recommendations of an expert panel
    (Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 2021) Babiloni, Claudio; De Frutos Lucas, Jaisalmer; Fernández Lucas, Alberto Amable; López Sanz, David; Maestu Unturbe, Fernando; Guntekin, Bahar
    The Electrophysiology Professional Interest Area (EPIA) and Global Brain Consortium endorsed recommendations on candidate EEG measures for Alzheimer’s disease (AD) clinical trials. The Panel reviewed the field literature. As most consistent findings, AD patients with mild cognitive impairment and dementia showed abnormalities in peak frequency, power, and “interrelatedness” at posterior alpha (8-12 Hz) and widespread delta (<4 Hz) and theta(4-8 Hz) rhythms in relation to disease progression and interventions. The following consensus statements were subscribed: (i) Standardization of instructions to patients, rsEEG recording methods, and selection of artifact-free rsEEG periods are needed; (ii) Power density and “interrelatedness” rsEEG measures (e.g., directed transfer function, phase lag index, linear lagged connectivity, etc.) at delta, theta, and alpha frequency bands may be use for stratification of AD patients and monitoring of disease progression and intervention; and (iii) International multisectoral initiatives are mandatory for regulatory purposes.
  • Item
    Enhancement of posterior brain functional networks in bilingual older adults
    (Bilingualism: Language and Cognition, 2019) De Frutos Lucas, Jaisalmer; López Sanz, David; Cuesta Prieto, Pablo; Bruña Fernández, Ricardo; Fuente, Sofía de la; Serrano Martínez, Noelia; López García, María Eugenia; Delgado Losada, María Luisa; López Sánchez, Ramón; Marcos Dolado, Alberto; Maestu Unturbe, Fernando
    Bilingualism has been said to improve cognition and even delay the onset of Alzheimer's disease (AD). This research aimed to investigate whether bilingualism leaves a neurophysiological trace even when people are highly educated. We expected bilinguals to present better preserved brain functional networks, which could be a trace of higher cognitive reserve. With this purpose, we conducted a magnetoencephalographic study with a group of healthy older adults. We estimated functional connectivity using phase-locking value and found five clusters in parieto-occipital regions in which bilinguals exhibited greater functional connectivity than monolinguals. These clusters included brain regions typically implicated in language processing. Furthermore, these functional changes correlated with caudate volumes (a key region in language shifting and control) in the bilingual sample. Interestingly, decreased Functional Connectivity between posterior brain regions had already been identified as an indicator of aging/preclinical AD but, according to our study, bilingualism seems to exert the opposite effect.
  • Item
    The relationship between physical activity, apolipoprotein E ε4 carriage, and brain health
    (Alzheimer's Research & Therapy, 2020) De Frutos Lucas, Jaisalmer; Cuesta Prieto, Pablo; López Sanz, David; Peral Suárez, África; Cuadrado Soto, Esther; Ramírez Toraño, Federico; Brown, Belinda M.; Serrano, Juan M.; Laws, Simon M.; Rodríguez Rojo, Inmaculada Concepción; Verdejo Román, Juan; Bruña Fernández, Ricardo; Delgado Losada, María Luisa; Barabash Bustelo, Ana; López Sobaler, Ana María; López Sánchez, Ramón; Marcos Dolado, Alberto; Maestu Unturbe, Fernando
    Background: Neuronal hyperexcitability and hypersynchrony have been described as key features of neurophysiological dysfunctions in the Alzheimer’s disease (AD) continuum. Conversely, physical activity (PA) has been associated with improved brain health and reduced AD risk. However, there is controversy regarding whether AD genetic risk (in terms of APOE ε4 carriage) modulates these relationships. The utilization of multiple outcome measures within one sample may strengthen our understanding of this complex phenomenon. Method: The relationship between PA and functional connectivity (FC) was examined in a sample of 107 healthy older adults using magnetoencephalography. Additionally, we explored whether ε4 carriage modulates this association. The correlation between FC and brain structural integrity, cognition, and mood was also investigated. Results: A relationship between higher PA and decreased FC (hyposynchrony) in the left temporal lobe was observed among all individuals (across the whole sample, in ε4 carriers, and in ε4 non-carriers), but its effects manifest differently according to genetic risk. In ε4 carriers, we report an association between this region-specific FC profile and preserved brain structure (greater gray matter volumes and higher integrity of white matter tracts). In this group, decreased FC also correlated with reduced anxiety levels. In ε4 non-carriers, this profile is associated with improved cognition (working and episodic memory). Conclusions: PA could mitigate the increase in FC (hypersynchronization) that characterizes preclinical AD, being beneficial for all individuals, especially ε4 carriers.
  • Item
    Efficacy of Cognitive Training in Older Adults with and without Subjective Cognitive Decline Is Associated with Inhibition Efficiency and Working Memory Span, Not with Cognitive Reserve
    (Frontiers in Aging Neuroscience, 2018) López Sánchez, Ramón; Martín Aragoneses, María Teresa; Rubio Valdehita, Susana; Delgado Losada, María Luisa; Montejo, Pedro; Montenegro Peña, María Mercedes; Prados Atienza, José María; De Frutos Lucas, Jaisalmer; López Sanz, David
    The present study explores the role of cognitive reserve, executive functions, and working memory (WM) span, as factors that might explain training outcomes in cognitive status. Eighty-one older adults voluntarily participated in the study, classified either as older adults with subjective cognitive decline or cognitively intact. Each participant underwent a neuropsychological assessment that was conducted both at baseline (entailing cognitive reserve, executive functions, WM span and depressive symptomatology measures, as well as the Mini-Mental State Exam regarding initial cognitive status), and then 6 months later, once each participant had completed the training program (Mini-Mental State Exam at the endpoint). With respect to cognitive status the training program was most beneficial for subjective cognitive decline participants with low efficiency in inhibition at baseline (explaining a 33% of Mini-Mental State Exam total variance), whereas for cognitively intact participants training gains were observed for those who presented lower WM span.
  • Item
    Episodic memory dysfunction and hypersynchrony in brain functional networks in cognitively intact subjects and MCI: a study of 379 individuals
    (Geroscience, 2022) Chino, Brenda; Cuesta Prieto, Pablo; Pacios García, Javier; De Frutos Lucas, Jaisalmer; Torres Simón, Lucía; Doval Moreno, Sandra; Marcos Dolado, Alberto; Bruña Fernández, Ricardo; Maestu Unturbe, Fernando
    Delayed recall (DR) impairment is one of the most significant predictive factors in defining the progression to Alzheimer’s disease (AD). Changes in brain functional connectivity (FC) could accompany this decline in the DR performance even in a resting state condition from the preclinical stages to the diagnosis of AD itself, so the characterization of the relationship between the two phenomena has attracted increasing interest. Another aspect to contemplate is the potential moderator role of the APOE genotype in this association, considering the evidence about their implication for the disease. 379 subjects (118 mild cognitive impairment (MCI) and 261 cognitively intact (CI) individuals) underwent an extensive evaluation, including MEG recording. Applying cluster-based permutation test, we identified a cluster of differences in FC and studied which connections drove such an effect in DR. The moderation effect of APOE genotype between FC results and delayed recall was evaluated too. Higher FC in beta band in the right occipital region is associated with lower DR scores in both groups. A significant anteroposterior link emerged in the seed-based analysis with higher values in MCI. Moreover, APOE genotype appeared as a moderator between beta FC and DR performance only in the CI group. An increased beta FC in the anteroposterior brain region appears to be associated with lower memory performance in MCI. This finding could help discriminate the pattern of the progression of healthy aging to MCI and the relation between resting state and memory performance.
  • Item
    Factors explaining language performance after training in elders with and without subjective cognitive decline
    (Frontiers in Aging Neuroscience, 2018) López Sánchez, Ramón; Prados Atienza, José María; Rubio Valdehita, Susana; Rodríguez Rojo, Inmaculada Concepción; De Frutos Lucas, Jaisalmer; Montenegro Peña, María Mercedes; Montejo, Pedro; Prada Crespo, David; Delgado Losada, María Luisa
    The present study explores if cognitive reserve, executive functions, and working memory capacity are predictive of performance in the language domain (specifically in sentence comprehension and naming) after a cognitive training intervention. Sixty six Spanish older adults voluntarily participated in the study, classified either as older adults with subjective cognitive decline according to Jessen et al.’s (2014) criteria (n = 35; 70.94 +/- 4.16 years old) or cognitively intact (n = 31; 71.34 +/- 4.96 years old). Written sentence comprehension and visual confrontation naming were assessed both immediately after recruitment (at the baseline), and then 6 months later, once each participant had completed his/her cognitive training (a well-known program in Spain, called UMAM; English translation: Madrid City Council Memory Unit Program). Cognitive reserve, executive functions (cognitive flexibility and controlled interference efficiency), and working memory capacity were measured for all participants at the baseline. Results pointed out that the subjective cognitive decline group presented greater benefits in the language domain than cognitively intact participants. We also observed that lower executive functioning and working memory capacity at the baseline predicted larger benefits in language performance after training, but only in the group of cognitively intact older adults. However, selected predictors hardly explained subjective cognitive decline participants’ results in language performance after training.
  • Item
    Functional Connectivity Hypersynchronization in Relatives of Alzheimer’s Disease Patients: An Early E/I Balance Dysfunction?
    (Cerebral Cortex, 2020) Ramírez Toraño, Federico; Bruña Fernández, Ricardo; De Frutos Lucas, Jaisalmer; Rodríguez Rojo, Inmaculada Concepción; Marcos de Pedro, Silvia; Delgado Losada, María Luisa; Gómez Ruiz, N; Barabash Bustelo, Ana; Marcos Dolado, Alberto; López Higes, Ramón; Maestu Unturbe, Fernando
    Alzheimer’s disease (AD) studies on animal models, and humans showed a tendency of the brain tissue to become hyperexcitable and hypersynchronized, causing neurodegeneration. However, we know little about either the onset of this phenomenon or its early effects on functional brain networks. We studied functional connectivity (FC) on 127 participants (92 middle-age relatives of AD patients and 35 age-matched nonrelatives) using magnetoencephalography. FC was estimated in the alpha band in areas known both for early amyloid accumulation and disrupted FC in MCI converters to AD. We found a frontoparietal network (anterior cingulate cortex, dorsal frontal, and precuneus) where relatives of AD patients showed hypersynchronization in high alpha (not modulated by APOE-ε4 genotype) in comparison to age-matched nonrelatives. These results represent the first evidence of neurophysiological events causing early network disruption in humans, opening a new perspective for intervention on the excitation/inhibition unbalance.
  • Item
    Functional Connectivity Hypersynchronization in Relatives of Alzheimer’s Disease Patients: An Early E/I Balance Dysfunction?
    (Cerebral Cortex, 2020) Ramírez Toraño, Federico; Bruña Fernández, Ricardo; De Frutos Lucas, Jaisalmer; Rodríguez Rojo, Inmaculada Concepción; Marcos de Pedro, Silvia; Delgado Losada, María Luisa; Gómez-Ruiz, N.; Barabash Bustelo, Ana; Marcos Dolado, Alberto; López Sánchez, Ramón; Maestu Unturbe, Fernando
    Alzheimer’s disease (AD) studies on animal models, and humans showed a tendency of the brain tissue to become hyperexcitable and hypersynchronized, causing neurodegeneration. However, we know little about either the onset of this phenomenon or its early effects on functional brain networks. We studied functional connectivity (FC) on 127 participants (92 middle-age relatives of AD patients and 35 age-matched nonrelatives) using magnetoencephalography. FC was estimated in the alpha band in areas known both for early amyloid accumulation and disrupted FC in MCI converters to AD. We found a frontoparietal network (anterior cingulate cortex, dorsal frontal, and precuneus) where relatives of AD patients showed hypersynchronization in high alpha (not modulated by APOE-ε4 genotype) in comparison to age-matched nonrelatives. These results represent the first evidence of neurophysiological events causing early network disruption in humans, opening a new perspective for intervention on the excitation/inhibition unbalance.