Person:
García Linares, Sara

Loading...
Profile Picture
First Name
Sara
Last Name
García Linares
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Biológicas
Department
Bioquímica y Biología Molecular
Area
Identifiers
UCM identifierORCIDScopus Author IDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 23
  • Item
    Three-dimensional structure of the actinoporin sticholysin I. Influence of long-distance effects on protein function
    (ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2013) García Linares, Sara; Castrillo, Inés; Bruix, Marta; Menéndez, Margarita; Alegre-Cebollada, Jorge; Martínez Del Pozo, Álvaro; Gavilanes Franco, José Gregorio
    Actinoporins are water-soluble proteins with the ability to form pores upon insertion into biological membranes. They constitute a family of proteins with high degree of sequence identities but different hemolytic activities, suggesting that minor conformational arrangements result in major functional changes. A good example of this situation is the sea anemone Stichodactyla helianthus which produces two very similar actinoporins, sticholysins I (StnI) and II (StnII), but of very different hemolytic efficiency. Within this idea, given that the high resolution three-dimensional structure of StnII is already known, we have now solved that one corresponding to StnI in order to analyze the influence of particular residues on the conformation and activity of these proteins. In addition, random mutagenesis has been also used to produce five less hemolytic variants of StnI. All these mutations map to functionally relevant regions because they are probably involved in conformational changes associated with pore formation, which take place after membrane binding, and involve long-distance rearrangements of the polypeptide chain of actinoporins.
  • Item
    Structural foundations of sticholysin functionality
    (BBA - Proteins and Proteomics, 2021) Palacios Ortega, Juan; García Linares, Sara; Rivera de Torre, Esperanza; Heras Márquez, Diego; Gavilanes, José G.; Peter, Slotte; Martínez del Pozo, Álvaro
    Actinoporins constitute a family of α pore-forming toxins produced by sea anemones. The soluble fold of these proteins consists of a β-sandwich flanked by two α-helices. Actinoporins exert their activity by specifically recognizing sphingomyelin at their target membranes. Once there, they penetrate the membrane with their N-terminal α-helices, a process that leads to the formation of cation-selective pores. These pores kill the target cells by provoking an osmotic shock on them. In this review, we examine the role and relevance of the structural features of actinoporins, down to the residue level. We look at the specific amino acids that play significant roles in the function of actinoporins and their fold. Particular emphasis is given to those residues that display a high degree of conservation across the actinoporin sequences known to date. In light of the latest findings in the field, the membrane requirements for pore formation, the effect of lipid composition, and the process of pore formation are also discussed.
  • Item
    Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction
    (Biophysical Journal, 2019) Palacios Ortega, Juan; García Linares, Sara; Rivera de la Torre, Esperanza; Gavilanes, José G.; Martínez del Pozo, Álvaro; Slotte, J. Peter
    Actinoporins are a group of soluble toxic proteins that bind to membranes containing sphingomyelin (SM) and oligomerize to form pores. Sticholysin II (StnII) is a member of the actinoporin family, produced by Stichodactyla helianthus. Cholesterol (Chol) is known to enhance the activity of StnII. However, the molecular mechanisms behind this activation have remained obscure, although the activation is not Chol specific but rather sterol specific. To further explore how bilayer lipids affect or are affected by StnII, we have used a multiprobe approach (fluorescent analogs of both Chol and SM) in combination with a series of StnII tryptophan (Trp)-mutants, to study StnII/bilayer interactions. First we compared StnII bilayer permeabilization in the presence of Chol or oleoyl-ceramide (OCer). The comparison was done since both Chol and OCer have a 1-hydroxyl which help to orient the molecule in the bilayer (although OCer have additional polar functional groups). Both Chol and OCer also have increased affinity for SM, which StnII may recognize. However, our results show that only Chol was able to activate StnII-induced bilayer permeabilization – OCer failed to active. To further examine possible Chol/StnII interactions, we measured Förster resonance energy transfer (FRET) between Trp in StnII and cholestatrienol (CTL), a fluorescent analog of Chol. We could show higher FRET efficiency between CTL and Trp:s in position 100 and 114 of StnII, when compared to three other Trp positions further away from the bilayer binding region of StnII. Taken together, our results suggest that StnII was able to attract Chol to its vicinity, maybe by showing affinity for Chol. SM interactions are known to be important for StnII binding to bilayers, and Chol is known to facilitate subsequent permeabilization of the bilayers by StnII. Our results help to better understand the role of these important membrane lipids for the bilayer properties of StnII.
  • Item
    Regulation of Sticholysin II-Induced Pore Formation by Lipid Bilayer Composition, Phase State, and Interfacial Properties
    (Langmuir, 2016) Palacios Ortega, Juan; García Linares, Sara; Astrand, Mia; Abdullah Al Sazzad, Md.; Gavilanes, José G.; Martínez del Pozo, Álvaro; Slotte, J. Peter
    Sticholysin II (StnII) is a pore-forming toxin that uses sphingomyelin (SM) as the recognition molecule in targeting membranes.After StnII monomers bind to SM, several toxin monomers act in concert to oligomerize into a functional pore. The regulation of StnII binding to SM, and the subsequent pore-formation process, is not fully understood. In this study, we examined how the biophysical properties of bilayers, originating from variations in the SM structure, from the presence of sterol species, or from the presence of increasingly polyunsaturated glycerophospholipids,affected StnII-induced pore formation. StnII-induced pore formation, as determined from calcein permeabilization, was fastest in the pure unsaturated SM bilayers. In 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/saturated SM bilayers (4:1 molar ratio), pore formation became slower as the chain length of the saturated SMs increased from 14 up to 24 carbons. In the POPC/palmitoyl-SM (16:0-SM) 4:1 bilayers, SM could not support pore formation by StnII if dimyristoyl-PC was included at 1:1 stoichiometry with 16:0-SM, suggesting that free clusters of SM were required for toxin binding and/or pore formation. Cholesterol and other sterols facilitated StnII-induced pore formation markedly, but the efficiency did not appear to correlate with the sterol structure. Benzyl alcohol was more efficient than sterols in enhancing the pore-formation process, suggesting that the effect on pore formation originated from alcohol-induced alteration of the hydrogen-bonding network in the SM-containing bilayers. Finally, we observed that pore formation by StnII was enhanced in the PC/16:0-SM 4:1 bilayers, in which the PC was increasingly unsaturated. We conclude that the physical state of bilayer lipids greatly affected pore formation by StnII. Phase boundaries were not required for pore formation, although SM in a gel state attenuated pore formation.
  • Item
    The metamorphic transformation of a water-soluble monomeric protein into an oligomeric transmembrane pore
    (Advances in Biomembranes and Lipid Self-Assembly, 2017) García Linares, Sara; Rivera de la Torre, Esperanza; Palacios Ortega, Juan; Gavilanes, José G.; Martínez del Pozo, Álvaro
    Sea anemones produce venoms containing different toxic molecules. Among them, actinoporins are some of the best characterized ones. They constitute a family of toxic polypeptides that belong to the much larger group of pore-forming toxins. Actinoporins remain mostly monomeric and stably folded in aqueous solution but, upon interaction with lipid membranes of specific composition, they become oligomeric integral membrane structures to build a pore. They insert an α-helix stretch within biological membranes, forming cation-selective pores with a diameter of 1–2 nm, which result in a colloid osmotic shock that leads to cell death. They are believed to participate in functions like predation, defense, and digestion and have been shown to be lethal for small crustaceans, mollusks, and fish. The best-known actinoporins are equinatoxin II (from Actinia equina), fragaceatoxin C (from Actinia fragacea), and sticholysins I and II (from Stichodactyla helianthus). In order to fully understand the pore formation mechanism of these proteins, several approaches have been used: (i) characterization of natural and artificial variants of actinoporins to determine the role of specific residues, (ii) study of their water-soluble and transmembrane structures, and (iii) employment of different lipids to evaluate the influence of membrane properties and composition. Further research is still needed, however, in order to fully understand the complex mechanism underlying actinoporins’ functionality.
  • Item
    Project number: 350
    EChemTest: sistema de evaluación de la Calidad en Química
    (2022) Sánchez Benítez, Francisco Javier; Díaz Blanco, Cristina; Guerrero Martínez, Andrés; Gutiérrez Alonso, Ángel; Lacadena García-Gallo, Francisco Javier; Lainez Ferrando, Alfredo; Pilo Santos, Miguel; Villalba Díaz, MaríaTeresa; García Linares, Sara
    Este proyecto plantea la herramienta EChemTest como mecanismo de evaluación de la Calidad de un Grado relacionado con la Química. También presenta la oportunidad de evaluar cómo ha influido la docencia online en la adquisición de conocimientos, comparando con cursos anteriores.
  • Item
    Jornadas sobre la carrera investigadora: Módulo I, primera sesión: Etapas de la carrera Investigadora (predoctoral y postdoctoral).
    (2020) Martínez Rodrigo, Abel; Salazar Roa, María; Valdés Mora, Fátima; García Linares, Sara; Arias Álvarez, María; Briones Dieste, Víctor; San Andrés Moya, Margarita; Varela Nieto, Isabel; Serres Dalmau, María Consolacion; Gascón Inchausti, Fernando
    La Facultad de Veterinaria y la Sociedad Española de Bioquímica y Biología Molecular (SEBBM) organizan de manera conjunta unas I Jornadas sobre la carrera investigadora que comenzarán en Enero de 2021. En la organización se ha colaborado de manera conjunta con otras Facultades de la UCM con similitud en sus programas de doctorado como son la Facultad de CC. Biológicas, la Facultad de CC. Químicas, la Facultad de Medicina y la Facultad de Farmacia. Las jornadas están encuadradas dentro de las Actividades Formativas de la Escuela de Doctorado de la UCM y están orientadas principalmente a Estudiantes de Doctorado, pero también a Investigadores en distintas etapas de su carrera investigadora, en el área de Ciencias de la Salud y Experimentales principalmente. Asimismo, hay sesiones que pueden resultar de interés para otras disciplinas debido a su carácter transversal.
  • Item
    The behaviour of sea anemone actinoporins at the water-membrane interface
    (Biochimica et Biophysica Acta - Biomembranes, 2011) García Ortega, Lucía; Alegre Cebollada, Jorge; García Linares, Sara; Bruix, Marta; Martínez del Pozo, Álvaro; Gavilanes, José G.
    Actinoporins constitute a group of small and basic α-pore forming toxins produced by sea anemones. They display high sequence identity and appear as multigene families. They show a singular behaviour at the water-membrane interface: In aqueous solution, actinoporins remain stably folded but, upon interaction with lipid bilayers, become integral membrane structures. These membranes contain sphingomyelin, display phase coexistence, or both. The water soluble structures of the actinoporins equinatoxin II (EqtII) and sticholysin II (StnII) are known in detail. The crystalline structure of a fragaceatoxin C (FraC) nonamer has been also determined. The three proteins fold as a β-sandwich motif flanked by two α-helices, one of them at the N-terminal end. Four regions seem to be especially important: A cluster of aromatic residues, a phosphocholine binding site, an array of basic amino acids, and the N-terminal α-helix. Initial binding of the soluble monomers to the membrane is accomplished by the cluster of aromatic amino acids, the array of basic residues, and the phosphocholine binding site. Then, the N-terminal α-helix detaches from the β-sandwich, extends, and lies parallel to the membrane. Simultaneously, oligomerization occurs. Finally, the extended N-terminal α-helix penetrates the membrane to build a toroidal pore. This model has been however recently challenged by the cryo-EM reconstruction of FraC bound to phospholipid vesicles. Actinoporins structural fold appears across all eukaryotic kingdoms in other functionally unrelated proteins. Many of these proteins neither bind to lipid membranes nor induce cell lysis. Finally, studies focusing on the therapeutic potential of actinoporins also abound.
  • Item
    One single salt bridge explains the different cytolytic activities shown by actinoporins sticholysin I and II from the venom of Stichodactyla helianthus
    (Archives of Biochemistry and Biophysics, 2017) Rivera de Torre, Esperanza; Palacios Ortega, Juan; García Linares, Sara; Gavilanes, José G.; Martínez del Pozo, Álvaro
    Sticholysins I and II (StnI and StnII), α-pore forming toxins from the sea anemone Stichodactyla helianthus, are water-soluble toxic proteins which upon interaction with lipid membranes of specific composition bind to the bilayer, extend and insert their N-terminal α-helix, and become oligomeric integral membrane structures. The result is a pore that leads to cell death by osmotic shock. StnI and StnII show 93% of sequence identity, but also different membrane pore-forming activities. The hydrophobicity profile along the first 18 residues revealed differences which were canceled by substituting StnI amino acids 2 and 9. Accordingly, the StnID9A mutant, and the corresponding StnIE2AD9A variant, showed enhanced hemolytic activity. They also revealed a key role for an exposed salt bridge between Asp9 and Lys68. This interaction is not possible in StnII but appears conserved in the other two well-characterized actinoporins, equinatoxin II and fragaceatoxin C. The StnII mutant A8D showed that this single replacement was enough to transform StnII into a version with impaired pore-forming activity. Overall, the results show the key importance of this salt bridge linking the N-terminal stretch to the β-sandwich core. A conclusion of general application for the understanding of salt bridges role in protein design, folding and stability.
  • Item
    Functional and Structural Variation among Sticholysins, Pore-Forming Proteins from the Sea Anemone Stichodactyla helianthus
    (International journal of molecular sciences, 2020) Rivera de la Torre, Esperanza; Palacios Ortega, Juan; Slotte, J. Peter; Gavilanes, José G.; Martínez del Pozo, Álvaro; García Linares, Sara
    Venoms constitute complex mixtures of many different molecules arising from evolution in processes driven by continuous prey–predator interactions. One of the most common compounds in these venomous cocktails are pore-forming proteins, a family of toxins whose activity relies on the disruption of the plasmatic membranes by forming pores. The venom of sea anemones, belonging to the oldest lineage of venomous animals, contains a large amount of a characteristic group of pore-forming proteins known as actinoporins. They bind specifically to sphingomyelin-containing membranes and suffer a conformational metamorphosis that drives them to make pores. This event usually leads cells to death by osmotic shock. Sticholysins are the actinoporins produced by Stichodactyla helianthus. Three different isotoxins are known: Sticholysins I, II, and III. They share very similar amino acid sequence and three-dimensional structure but display different behavior in terms of lytic activity and ability to interact with cholesterol, an important lipid component of vertebrate membranes. In addition, sticholysins can act in synergy when exerting their toxin action. The subtle, but important, molecular nuances that explain their different behavior are described and discussed throughout the text. Improving our knowledge about sticholysins behavior is important for eventually developing them into biotechnological tools.