Person:
Pulido Lamas, Cintia

Loading...
Profile Picture
First Name
Cintia
Last Name
Pulido Lamas
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Física
Area
Química Física
Identifiers
UCM identifierORCIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Homogeneous nucleation of NaCl in supersaturated solutions
    (Physical Chemistry Chemical Physics, 2021) Pulido Lamas, Cintia; Espinosa, Jorge; Conde, Maria; Ramirez, Jorge; Montero De Hijes, Pablo; Noya, Eva; Vega De Las Heras, Carlos; Sanz, Eva
    The seeding method is an approximate approach to investigate nucleation that combines molecular dynamics simulations with classical nucleation theory. Recently, this technique has been successfully implemented in a broad range of nucleation studies. However, its accuracy is subject to the arbitrary choice of the order parameter threshold used to distinguish liquid-like from solid-like molecules. We revisit here the crystallization of NaCl from a supersaturated brine solution and show that consistency between seeding and rigorous methods, like Forward Flux Sampling (from previous work) or spontaneous crystallization (from this work), is achieved by following a mislabelling criterion to select such threshold (i.e. equaling the fraction of the mislabelled particles in the bulk parent and nucleating phases). This work supports the use of seeding to obtain fast and reasonably accurate nucleation rate estimates and the mislabelling criterion as one giving the relevant cluster size for classical nucleation theory in crystallization studies
  • Item
    Freezing point depression of salt aqueous solutions using the Madrid-2019 model
    (The Journal of Chemical Physics, 2022) Pulido Lamas, Cintia; Vega De Las Heras, Carlos; Noya, Eva
    Salt aqueous solutions are relevant in many fields, ranging from biological systems to seawater. Thus, the availability of a force-field that is able to reproduce the thermodynamic and dynamic behavior of salt aqueous solutions would be of great interest. Unfortunately, this has been proven challenging, and most of the existing force-fields fail to reproduce much of their behavior. In particular, the diffusion of water or the salt solubility are often not well reproduced by most of the existing force-fields. Recently, the Madrid-2019 model was proposed, and it was shown that this force-field, which uses the TIP4P/2005 model for water and non-integer charges for the ions, provides a good description of a large number of properties, including the solution densities, viscosities, and the diffusion of water. In this work, we assess the performance of this force-field on the evaluation of the freezing point depression. Although the freezing point depression is a colligative property that at low salt concentrations depends solely on properties of pure water, a good model for the electrolytes is needed to accurately predict the freezing point depression at moderate and high salt concentrations. The coexistence line between ice and several salt aqueous solutions (NaCl, KCl, LiCl, MgCl2, and Li2SO4) up to the eutectic point is estimated from direct coexistence molecular dynamics simulations. Our results show that this force-field reproduces fairly well the experimentally measured freezing point depression with respect to pure water freezing for all the salts and at all the compositions considered.
  • Item
    Project number: PIMCD378/23-24
    Innovación sobre la docencia y evaluación del laboratorio de Química Física I
    (2024) Omiste Romero, Juan José; Ahijado Guzmán, Rubén; Blázquez Fernández, Samuel; Caselli, Niccolo; Díaz Blanco, Cristina; Guerrero Martínez, Andrés; Hernández Díaz, María Yolanda; Labrador Páez, Lucía; Marggi Poullaín, Sonia; Pulido Lamas, Cintia; Sánchez Benítez, Francisco Javier; Sola Reija, Ignacio; Suardíaz Delrío, Reynier; Izquierdo Ruiz, Fernando; Lobato Fernández, Álvaro; Sánchez González, Julia