Person: Calvo Sorando, José Pedro
Loading...
First Name
José Pedro
Last Name
Calvo Sorando
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Geológicas
Department
Area
Petrología y Geoquímica
Identifiers
90 results
Search Results
Now showing 1 - 10 of 90
Publication Contribución de los servicios geológicos al desarrollo de las ciencias de la tierra(Asociación Española para la Enseñanza de las Ciencias de la Tierra, 2008) Calvo Sorando, José PedroLos Servicios Geológicos son organizaciones gubernamentales que tienen como objetivo básico la generación de infraestructura geocientífica. En su origen, la función central de los Servicios Geológicos fue la realización de cartografía dirigida a la investigación de materias primas minerales y otros recursos geológicos. En la última parte del siglo XX, muchos Servicios Geológicos han ampliado sus actividades a investigaciones relacionadas con los riesgos naturales y con muy variados problemas medio-ambientales. Estos trabajos se complementan con el mantenimiento de archivos y bases de datos, así como con la publicación de mapas, libros e informes, que contribuyen a la creación sistemática de conocimiento geocientífico del territorio y quedan a disposición de un amplio número de usuarios, tanto del sector académico, de las administraciones, del ámbito empresarial y del público en general.Publication Los yacimientos de vertebrados continentales del Aragoniense superior (Mioceno medio) de Toril, Cuenca de Calatayud-Daroca(Sociedad Geológica de España., 2004) Azanza, B.; Alonso-Zarza, Ana María; Álvarez-Sierra, M. Ángeles; Calvo Sorando, José Pedro; Fraile, S.; García-Paredes, I.; Gómez, E.; Hernández Fernández, Manuel; Meulen, Albert J. van der; Miguel, D. de; Montoya, Plini; Morales Romero, Jorge; Murelaga, Xabier; Peláez Campomanes, Pablo; Pérez, B.; Quiralte, Victoria; Salesa Calvo, Manuel J; Sánchez, Israel M.; Sanchez Marco, Antonio; Soria, D.The paleontological sites of Toril 3A and B (Upper Aragonian, Biozone C3, MN 7/8) posses an exceptional and abundant fauna of vertebrates. From 1997 until 2001 these two localities have been object of systematic paleontological excavations. Up to now 36 species of large and small mammals have been found in these localities; the association of vertebrates also includes amphibians, reptiles and birds, among the remains of fossils birds it is frequent to found egg shell fragments. There are not significant differences in the qualitative and quantitative faunistic composition of the two sites; in both the undetermined bone fragments and the remains of chelonians, most of them dermal bones, are the dominant fossils. An important characteristic is the abundance of small size hornless ruminants, which are quite scarce in the stratified sites of the Spanish Aragonian. Neither there are differences in the composition of the micromammals, the association is overwhelmingly dominated (more than 95%) for different cricetid species; in Toril 3A beavers reappears for the first time during the Aragonian, and they will be frequent in younger faunas of the same basin. The fossils were deposited in different sedimentary environments, related with alluvial and shallow lacustrine environments.Publication Lower Miocene gypsum palaeokarst in the Madrid Basin (central Spain): dissolution diagenesis, morphological relics and karst end-products(Blackwell Publishing Ltd, 2002) Rodríguez Aranda, Juan Pablo; Calvo Sorando, José Pedro; Sanz Montero, M. EstherThe Miocene sedimentary record of the Madrid Basin displays several examples of palaeokarstic surfaces sculpted within evaporite formations. One of these palaeokarstic surfaces represents the boundary between two main lithostratigraphic units, the Miocene Lower and Intermediate units of the Madrid Basin. The palaeokarst formed in lacustrine gypsum deposits of Aragonian age and corresponds to a surface palaeokarst (epikarst), further buried by terrigenous deposits of the overlying unit. Karst features are recognized up to 5.5 m beneath the gypsum surface. Exokarst and endokarst zones are distinguished by the spatial distribution of solution features, i.e. karren, dolines, pits, conduits and caves, and collapse breccias, sedimentary fills and alteration of the original gypsum across the karst profiles. The development of the gypsum palaeokarst began after drying out of a saline lake basin, as supported by recognition of root tubes, later converted to cylindrical and funnel-shaped pits, at the top of the karstic profiles. The existence of a shallow water table along with low hydraulic gradients was the main factor controlling the karst evolution, and explains the limited depth reached by both exokarst and endokarst features. Synsedimentary fill of the karst system by roughly laminated to massive clay mudstone with subordinate carbonate and clastic gypsum reflects a punctuated sedimentation regime probably related to episodic heavy rainfalls typical of arid to semi-arid climates. Duration of karstification is of the order of several thousands of years, which is consistent with previous statements that gypsum karstification can develop rapidly over geologically short time periods.Publication Panorama actual de las rocas y minerales industriales en España(Sociedad Española de Mineralogía, 2005) Calvo Sorando, José Pedro; García del Cura, Mª ÁngelesPublication Mediation of endoevaporitic microbial communities in early replacement of gypsum by dolomite: a case study from Miocene lake deposits of the Madrid basin, Spain(SEPM (Society for Sedimentary Geology), 2006) Sanz Montero, M. Esther; Rodríguez Aranda, Juan Pablo; Calvo Sorando, José PedroBased on petrographic, mineralogical, isotope, and facies assemblage analysis, a microbial origin is established for the formation of dolomite associated with gypsum in Miocene evaporite lake deposits of the Madrid Basin, central Spain. In these deposits, dolomite is present as both intercalated carbonate beds, locally showing domal stromatolite structures between packages of selenite Christmas tree-like gypsum, and patches replacing macrocrystalline gypsum. Texture of the dolomite is characterized by crystal aggregates showing a variety of crystal sizes and morphologies, e.g., platelets, rhombs, micro-rods, and rings, whilst larger crystals are commonly spherical and/or wheat-grain shaped. Organic remains, in the form of filaments, shrubs, micro-fibrils, and strands, are also common and contain significant amounts of carbon. These textural features are also recognized in dolomite replacing gypsum, where Fe oxide and sulfide as well as celestite are ubiquitous mixed with the dolomite groundmass. The dolomite, whether primary or replacing gypsum, is poorly ordered and slightly Ca-rich, thus non stoichiometric. Stable-isotope compositions are characterized by negative values for both oxygen and carbon. Dolomite beds featuring domal stromatolites have ð18O values ranging from 22.99‰ and 23.79‰ and ð13C values ranging from 24.67‰ and 27.35‰, whilst ð13C values determined in the dolomite replacive of gypsum shows a small range of variation between 25.70‰ and 26.96‰. By contrast, ð18O values of replacive dolomite oscillate in a wider range (from 23.04‰ to 27.99‰). Formation of the dolomite was associated mainly with microbial mats, having taken place in relatively diluyed lake water. Further evaporative concentration resulted in precipitation of gypsum crystals sealing the mats and creating endoevaporitic microenvironments in which endolithic cyanobaterial activity produced extensive boring and corrosion of the gypsum crystals. Hiatuses in gypsum growth caused an intensification of the corrosion process and favored the precipitation of dolomite mediated by microbes, resulting in pervasive replacement of the sulfate.Publication Caracterización de depósitos carbonáticos ligados a paleosurgencias en el sector de Batallones-Malcovadeso (Neógeno de la Cuenca de Madrid)(Consejo Superior de Investigaciones Científicas, Museo Nacional de Ciencias Naturales, 2006) Pozo, M.; Casas, J.; Medina, J.A.; Calvo Sorando, José Pedro; Silva Barroso, Pablo GabrielEn la zona de canteras de Valdeinfierno, en el sector de Batallones-Malcovadeso, parte centro-meridional de la Cuenca de Madrid, se ha reconocido una serie de depósitos carbonáticos que presentan geometría dómica y estructura interna columnar. Dentro de estos depósitos de carbonato se distinguen dos unidades. La inferior (U2) es mayoritariamente dolomítica y de estructura brechoide, y petrográficamente consiste en dolomicritas con cemento calcítico. La superior (U3) está formada tanto por dolomita como por calcita, y se caracteriza por el desarrollo de morfologías columnares de aspecto travertínico. Petrográficamente, los depósitos de esta unidad consisten en caliza con texturas alveolar y biogénica. Entre las columnas de carbonato se distinguen abundantes masas arcillosas. Hacia la base de estas unidades carbonáticas se sitúa una unidad detrítica (U1), formada por arenas feldespáticas y a su techo se dispone un conjunto lutítico con alguna intercalación carbonática de composición dolomítica (Unidad U4) y, por encima de estas lutitas, un conjunto calizo (Unidad U5). Las arcillas presentes en la unidad U3 tienen una composición (sepiolita > esmectita trioctaédrica ± illita) netamente diferente a las de la unidad U4 (esmectita dioctaédrica > illita ± caolinita). La composición isotópica de los carbonatos de las unidades U2 y U3, así como de los niveles carbonatados de la unidad U4, es bastante similar en el caso de la dolomita, con valores δ13C que oscilan entre –6,21 y –7,78‰ y entre –3,23 y –4,05‰ para el δ18O. Por otro lado, desde un punto de vista de su composición isotópica, se diferencian los carbonatos de la unidad 4 y del techo de la unidad 2, exclusivamente calcíticos, en los que los valores de δ13C oscilan entre –8,07 y –11,75‰, y los de δ18O entre –5,27 y –7,35‰. La calcita existente en los niveles dolomíticos presenta valores intermedios entre los dos grupos anteriores. Los rasgos de la sucesión sedimentaria y los resultados analíticos obtenidos indican una fase de expansión lacustre en la zona estudiada con un cambio en la química de las aguas, todo ello favorecido por la entrada de aguas subterráneas a través de surgencias. [ABSTRACT] Carbonate deposits showing domic shape and columnar internal structure have been recognized in the Valdeinfierno quarries (Batallones-Malcovadeso area, central-southern Madrid Basin). Two lithological units (U2 and U3) are differentiated in the carbonates. Unit U2 is mainly brecciated dolomite that consists of dolomicrite with calcite cements. Unit U3 is made up of both calcite and dolomite and is characterized by columnar shapes resembling travertine. Under the microscope, the carbonates consist of limestones with alveolar and biogenic textural features. Abundant clayey masses have been observed within and between the columns. The carbonate units are underlain by a detrital unit (U1) composed of feldspar-rich sandstones. The upper part of the section shows a mudstone unit with local dolomitic carbonate inserts (U4) which is in turn covered by a package of limestone beds (U5). Clays occurring in unit U3 show a different composition (sepiolite > trioctahedral smectite ± illite) than those forming unit U4 (dioctahedral smectite > illite ± kaolinite). Stable isotopic composition of carbonates from units U2, U3 and carbonate inserts of U4 is very similar for dolomite, with δ13C values ranging from –6,21 to –7,78‰,Publication Procesos de sedimentación y biomineralización en la laguna alcalina de las Eras (Humedal Coca-Olmedo)(Sociedad Geológica de España, 2013) Sanz Montero, M. Esther; Arroyo, Xabier; Cabestrero, Óscar; Calvo Sorando, José Pedro; Fernández Escalante, Enrique; Fidalgo, Concepción; García del Cura, M. Ángeles; García-Avilés, Javier; González-Martín, J. Antonio; Rodríguez Aranda, Juan Pablo; Rovira Sanroque, José VicenteLa Laguna de Las Eras es uno de los pequeños y someros cuerpos de agua, que forman el humedal de la zona Coca-Olmedo (cuenca del Duero), caracterizado por su elevada alcalinidad, lo que constituye un rasgo singular dentro de Europa. La laguna presenta una salmuera de tipo Na-Mg-ClSO4 y su superficie está colonizada por tapices microbianos, donde se desarrollan estructuras sedimentarias inducidas por los microorganismos (MISS). Se reconocen diversos minerales autigénicos asociados a los tapices: thenardita, hidromagnesita,sulfatos y fosfatos magnésicos, azufre y halita. Junto a éstos destacan, por ser carbonatos atípicos en Europa, natrón y trona. El estudio petrográfico de los precipitados revela que éstos guardan una estrecha relación con las estructuras microbianas, sugiriendo cierta influencia de los microorganismos en la precipitación mineral.Los tapices microbianos de la laguna de Las Eras constituyen buenos análogos para comprender los procesos geobiológicos y ahondar en la reconstrucción paleoambiental de los lagos alcalinos que han existido desde el Arcaico.Publication Los elementos traza (Mg, Sr, Ha, Fe, Mn) en carbonatos: ambiente genético del Karst del techo de la unidad intermedia de la Cuenca neógena de Madrid.(CEDEX, 1992) Cañaveras Jiménez, Juan Carlos; Ordóñez Delgado, Salvador; Hoyos Gómez, Manuel; Calvo Sorando, José PedroEste trabajo trata de caracterizar geoquímicamente el karst del techo de la U. Intermedia del Mioceno en las partes centrales de la Cuenca de Madrid. Para ello se han estudiado una serie de elementos traza (Mg, Sr, Na, Fe y Mn) mediante fluorescencia de rayos X. En base a este estudio se han distinguido dos tipos de procesos: De reemplazamiento y/o recristalización, que implican la litificación y homogeneización química de un sedimento calcítico-dolomítico; y procesos de precipitación química de espeleotemas en función de su contenido en Sr, asignando un probable origen aragonítico a los de mayor contenido en Sr.Publication Sedimentology and geochemistry of carbonates from lacustrine sequences in the Madrid Basin, central Spain(Elsevier Science B.V., Amsterdam., 1995) Calvo Sorando, José Pedro; Jones, B.F.; Bustillo Revuelta, Manuel; Fort González, Rafael; Alonso-Zarza, Ana María; Kendall, C.Lacustrine and alluvial carbonate facies have been investigated in Middle Miocene successions of the western side of the Madrid Basin in order to evaluate paleoenvironments in which carbonates formed. Carbonate facies are varied and include: ( 1) calcrete and dolocrete; (2) pond deposits; (3) lake margin dolostone; (4) mudflat carbonate; and (5) open-lake carbonate facies. The dominant mineralogy of these is dolomite and/or low-Mg calcite. No high-Mg calcite or aragonite have been detected in any sample. ð18 O- and ð13 C-values range from - 8.20 to - 1.80‰ PDB and - 10.25 to -0.70‰ PBD, respectively. More negative 8 18 O- and 8 13 C-values correspond to predominantly calcite calcretes and to carbonate deposited in ponds at the foot of arkosic alluvium. Higher ð18 O-values are from both lacustrine carbonate and dolocrete. This latter lithofacies has strong geochemical similarities to dolostones deposited in a lake margin environment. Mudflat carbonate, deposited on shallow platforms subject to lake water oscillation, shows great heterogeneity in both stable isotope value and trace-element content. The mineralogy of these carbonates is dominated by calcite and the limestones contain molds of gypsum. Occurrence of calcitized dolomite textures in these facies suggests the influence of fresher water during expanding lacustrine cycles or further interaction with less saline groundwater. Trace-element contents are considered to be potential indicators of the different carbonate facies types, thus aiding the paleoenvironmental interpretation. However, discrimination among carbonate facies on the basis of trace-element contents appears to be dependent on the statistical method utilized for treatment of data. More information is needed to ascertain their use as paleoenvironmental indicators.Publication Petrographic and geochemical evidence for the formation of primary, bacterially induced lacustrine dolomite: La Roda 'white earth' (Pliocene, central Spain)(Blackwell Publishing Ltd, 2001) García del Cura, M. Ángeles; Calvo Sorando, José Pedro; Ordóñez Delgado, Salvador; Jones, Blair F.; Cañaveras, Juan CarlosUpper Pliocene dolomites (‘white earth’) from La Roda, Spain, offer a good opportunity to evaluate the process of dolomite formation in lakes. The relatively young nature of the deposits could allow a link between dolomites precipitated in modern lake systems and those present in older lacustrine formations. The La Roda Mg‐carbonates (dolomite unit) occur as a 3·5‐ to 4‐m‐thick package of poorly indurated, white, massive dolomite beds with interbedded thin deposits of porous carbonate displaying root and desiccation traces as well as local lenticular gypsum moulds. The massive dolomite beds consist mainly of loosely packed 1‐ to 2‐μm‐sized aggregates of dolomite crystals exhibiting poorly developed faces, which usually results in a subrounded morphology of the crystals. Minute rhombs of dolomite are sparse within the aggregates. Both knobbly textures and clumps of spherical bodies covering the crystal surfaces indicate that bacteria were involved in the formation of the dolomites. In addition, aggregates of euhedral dolomite crystals are usually present in some more clayey (sepiolite) interbeds. The thin porous carbonate (mostly dolomite) beds exhibit both euhedral and subrounded, bacterially induced dolomite crystals. The carbonate is mainly Ca‐dolomite (51–54 mol% CaCO3), showing a low degree of ordering (degree of ordering ranges from 0·27 to 0·48). Calcite is present as a subordinate mineral in some samples. Sr, Mn and Fe contents show very low correlation coefficients with Mg/Ca ratios, whereas SiO2 and K contents are highly correlated. δ18O‐ and δ13C‐values in dolomites range from −3·07‰ to 5·40‰ PDB (mean=0·06, σ=1·75) and from −6·34‰ to −0·39‰ PDB (mean=−3·55, σ=1·33) respectively. Samples containing significant amounts of both dolomite and calcite do not in general show significant enrichment or depletion in 18O and 13C between the two minerals. The correlation coefficient between δ18O and δ13C for dolomite is extremely low and negative (r=−0·05), whereas it is higher and positive (r=0·47) for calcite. The lacustrine dolomite deposit from La Roda is interpreted mainly as a result of primary precipitation of dolomite in a shallow, hydrologically closed perennial lake. The lake was supplied by highly saturated HCO3−/CO32− groundwater that leached dolomitic Mesozoic formations. Precipitation of dolomite from alkaline lake waters took place under a semi‐arid to arid climate. However, according to our isotopic data, strong evaporative conditions were not required for the formation of the La Roda dolomite. A significant contribution by bacteria to the formation of the dolomites is assumed in view of both petrographic and geochemical evidence.