Person:
Portolés Pérez, María Teresa

Loading...
Profile Picture
First Name
María Teresa
Last Name
Portolés Pérez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Osteogenic-angiogenic coupled response of cobalt-containing mesoporous bioactive glasses in vivo
    (Acta Biomaterialia, 2024) Jiménez Holguín, Javier; Lozano Borregón, Daniel; Saiz-Pardo Sanz, Melchor; Pablo, David de; Ortega, Luis ; Enciso, Silvia; Fernandez Tome, Blanca; Díaz-Güemes, Idoia; Sanchez Margallo, Francisco Miguel; Portolés Pérez, María Teresa; Arcos Navarrete, Daniel
    The incorporation of cobalt ions into the composition of bioactive glasses has emerged as a strategy of interest for bone regeneration purposes. In the present work, we have designed a set of bioactive mesoporous glasses SiO2 -CaO-P2 O5 -CoO (Co-MBGs) with different amounts of cobalt. The physicochemi- cal changes introduced by the Co2 + ion, the in vitro effects of Co-MBGs on preosteoblasts and endothelial cells and their in vivo behaviour using them as bone grafts in a sheep model were studied. The results show that Co2 + ions neither destroy mesoporous ordering nor inhibit in vitro bioactive behaviour, ex- erting a dual role as network former and modifier for CoO concentrations above 3 % mol. On the other hand, the activity of Co-MBGs on MC3T3-E1 preosteoblasts and HUVEC vascular endothelial cells is de- pendent on the concentration of CoO present in the glass. For low Co-MBGs concentrations (1mg/ml) cell viability is not affected, while the expression of osteogenic (ALP, RUNX2 and OC) and angiogenic (VEGF) genes is stimulated. For Co-MBGs concentration of 5 mg/ml, cell viability decreases as a function of the CoO content. In vivo studies show that the incorporation of Co2 + ions to the MBGs improves the bone regeneration activity of these materials, despite the deleterious effect that this ion has on bone-forming cells for any of the Co-MBG compositions studied. This contradictory effect is explained by the marked increase in angiogenesis that takes place inside the bone defect, leading
  • Item
    Mesoporous Bioactive Nanoparticles for Bone Tissue Applications
    (International Journal of Molecular Sciences, 2023) Arcos Navarrete, Daniel; Portolés Pérez, María Teresa
    Research in nanomaterials with applications in bone regeneration therapies has experienced a very significant advance with the development of bioactive mesoporous nanoparticles (MBNPs). These nanomaterials consist of small spherical particles that exhibit chemical properties and porous structures that stimulate bone tissue regeneration, since they have a composition similar to that of conventional sol–gel bioactive glasses and high specific surface area and porosity values. The rational design of mesoporosity and their ability to incorporate drugs make MBNPs an excellent tool for the treatment of bone defects, as well as the pathologies that cause them, such as osteoporosis, bone cancer, and infection, among others. Moreover, the small size of MBNPs allows them to penetrate inside the cells, provoking specific cellular responses that conventional bone grafts cannot perform. In this review, different aspects of MBNPs are comprehensively collected and discussed, including synthesis strategies, behavior as drug delivery systems, incorporation of therapeutic ions, formation of composites, specific cellular response and, finally, in vivo studies that have been performed to date.
  • Item
    Osteoimmune Properties of Mesoporous Bioactive Nanospheres: A Study on T Helper Lymphocytes
    (Nanomaterials, 2023) Casarrubios Molina, Laura; Cicuéndez Maroto, Mónica; Vallet Regí, María Dulce Nombre; Portolés Pérez, María Teresa; Arcos Navarrete, Daniel; Feito Castellano, María José
    Bioactive mesoporous glass nanospheres (nanoMBGs) charged with antiosteoporotic drugs have great potential for the treatment of osteoporosis and fracture prevention. In this scenario, cells of the immune system are essential both in the development of disease and in their potential to stimulate therapeutic effects. In the present work, we hypothesize that nanoMBGs loaded with ipriflavone can exert a positive osteoimmune effect. With this objective, we assessed the effects of non-loaded and ipriflavone-loaded nanoparticles (nanoMBGs and nanoMBG-IPs, respectively) on CD4+ Th2 lymphocytes because this kind of cell is implicated in the inhibition of osseous loss by reducing the RANKL/OPG relationship through the secretion of cytokines. The results indicate that nanoMBGs enter efficiently in CD4+ Th2 lymphocytes, mainly through phagocytosis and clathrindependent mechanisms, without affecting the function of these T cells or inducing inflammatory mediators or oxidative stress, thus maintaining the reparative Th2 phenotype. Furthermore, the incorporation of the anti-osteoporotic drug ipriflavone reduces the potential unwanted inflammatory response by decreasing the presence of ROS and stimulating intracellular anti-inflammatory cytokine release like IL-4. These results evidenced that nanoMBG loaded with ipriflavone exerts a positive osteoimmune effect.