Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Osteogenic-angiogenic coupled response of cobalt-containing mesoporous bioactive glasses in vivo

Citation

Jiménez-Holguín, J., et al. «Osteogenic-Angiogenic Coupled Response of Cobalt-Containing Mesoporous Bioactive Glasses in Vivo». Acta Biomaterialia, vol. 176, marzo de 2024, pp. 445-57. DOI.org (Crossref), https://doi.org/10.1016/j.actbio.2024.01.003.

Abstract

The incorporation of cobalt ions into the composition of bioactive glasses has emerged as a strategy of interest for bone regeneration purposes. In the present work, we have designed a set of bioactive mesoporous glasses SiO2 -CaO-P2 O5 -CoO (Co-MBGs) with different amounts of cobalt. The physicochemi- cal changes introduced by the Co2 + ion, the in vitro effects of Co-MBGs on preosteoblasts and endothelial cells and their in vivo behaviour using them as bone grafts in a sheep model were studied. The results show that Co2 + ions neither destroy mesoporous ordering nor inhibit in vitro bioactive behaviour, ex- erting a dual role as network former and modifier for CoO concentrations above 3 % mol. On the other hand, the activity of Co-MBGs on MC3T3-E1 preosteoblasts and HUVEC vascular endothelial cells is de- pendent on the concentration of CoO present in the glass. For low Co-MBGs concentrations (1mg/ml) cell viability is not affected, while the expression of osteogenic (ALP, RUNX2 and OC) and angiogenic (VEGF) genes is stimulated. For Co-MBGs concentration of 5 mg/ml, cell viability decreases as a function of the CoO content. In vivo studies show that the incorporation of Co2 + ions to the MBGs improves the bone regeneration activity of these materials, despite the deleterious effect that this ion has on bone-forming cells for any of the Co-MBG compositions studied. This contradictory effect is explained by the marked increase in angiogenesis that takes place inside the bone defect, leading

Research Projects

Organizational Units

Journal Issue

Description

Unesco subjects

Keywords

Collections