Person:
Saiz-Pardo Sanz, Melchor

Loading...
Profile Picture
First Name
Melchor
Last Name
Saiz-Pardo Sanz
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Medicina
Department
Medicina Legal, Psiquiatría y Patología
Area
Anatomía Patológica
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 6 of 6
  • Item
    Project number: 146
    Incorporación del arte en la enseñanza de la Medicina
    (2021) Pelayo Alarcón, Adela; Ortega medina, Luis; López-Ibor Alcocer, María Inés; Blanco Caneda, Maria Luisa; Polo Gaitan, Maria Gracia; Diaz Mata, Leticia; Casado Fariñas, Maria Isabel; Pascual Martin, Alejandro; Saiz-Pardo Sanz, Melchor; Zamarro Sanz, María Luisa; González Morales, María Luisa; Sanz Ortega, Julián
    Mediante el estudio y análisis de obras de arte que manifiestan temas relacionados con la Medicina queremos enseñar al estudiante a observar y percibir, desarrollar el análisis critico, plantearse diagnósticos diferenciales en suma ejercer la medicina con mayor éxito. El análisis de estas obras de arte les ha permitido también tener una perspectiva histórica de la Medicina, enriquecer su formación humanística, aumentar la creatividad, el juicio critico y el trabajo en equipo.
  • Item
    Role of Telomere Length in Survival of Patients with Idiopathic Pulmonary Fibrosis and Other Interstitial Lung Diseases
    (Biomedicines, 2023) Tesolato, Sofía; Vicente Valor, Juan; Jarabo Sarceda, José Ramón; Calatayud Gastardi, Joaquín; Saiz-Pardo Sanz, Melchor; Nieto Barbero, María Asunción; Linares Gómez, María; Álvaro Álvarez, Dolores; Fraile, Carlos Alfredo; Hernando Trancho, Florentino; Iniesta Serrano, María Pilar; Gómez Martínez, Ana María; Uziel, Orit
    Interstitial lung diseases (ILDs) constitute a group of more than 200 disorders, with idiopathic pulmonary fibrosis (IPF) being one of the most frequent. Telomere length (TL) shortening causes loss of function of the lung parenchyma. However, little is known about its role as a prognostic factor in ILD patients. With the aim of investigating the role of TL and telomerase activity in the prognosis of patients affected by ILDs, we analysed lung tissue samples from 61 patients. We measured relative TL and telomerase activity by conventional procedures. Both clinical and molecular parameters were associated with overall survival by the Kaplan–Meier method. Patients with IPF had poorer prognosis than patients with other ILDs (p = 0.034). When patients were classified according to TL, those with shortened telomeres reported lower overall survival (p = 0.085); differences reached statistical significance after excluding ILD patients who developed cancer (p = 0.021). In a Cox regression analysis, TL behaved as a risk‐modifying variable for death associated with rheumatic disease (RD) co‐occurrence (p = 0.029). Also, in patients without cancer, ferritin was significantly increased in cases with RD and IPF co‐occurrence (p = 0.032). In relation to telomerase activity, no significant differences were detected. In conclusion, TL in lung tissue emerges as a prognostic factor in ILD patients. Specifically, in cases with RD and IPF co‐occurrence, TL can be considered as a risk‐modifying variable for death.
  • Item
    Osteogenic-angiogenic coupled response of cobalt-containing mesoporous bioactive glasses in vivo
    (Acta Biomaterialia, 2024) Jiménez Holguín, Javier; Lozano Borregón, Daniel; Saiz-Pardo Sanz, Melchor; Pablo, David de; Ortega, Luis ; Enciso, Silvia; Fernandez Tome, Blanca; Díaz-Güemes, Idoia; Sanchez Margallo, Francisco Miguel; Portolés Pérez, María Teresa; Arcos Navarrete, Daniel
    The incorporation of cobalt ions into the composition of bioactive glasses has emerged as a strategy of interest for bone regeneration purposes. In the present work, we have designed a set of bioactive mesoporous glasses SiO2 -CaO-P2 O5 -CoO (Co-MBGs) with different amounts of cobalt. The physicochemi- cal changes introduced by the Co2 + ion, the in vitro effects of Co-MBGs on preosteoblasts and endothelial cells and their in vivo behaviour using them as bone grafts in a sheep model were studied. The results show that Co2 + ions neither destroy mesoporous ordering nor inhibit in vitro bioactive behaviour, ex- erting a dual role as network former and modifier for CoO concentrations above 3 % mol. On the other hand, the activity of Co-MBGs on MC3T3-E1 preosteoblasts and HUVEC vascular endothelial cells is de- pendent on the concentration of CoO present in the glass. For low Co-MBGs concentrations (1mg/ml) cell viability is not affected, while the expression of osteogenic (ALP, RUNX2 and OC) and angiogenic (VEGF) genes is stimulated. For Co-MBGs concentration of 5 mg/ml, cell viability decreases as a function of the CoO content. In vivo studies show that the incorporation of Co2 + ions to the MBGs improves the bone regeneration activity of these materials, despite the deleterious effect that this ion has on bone-forming cells for any of the Co-MBG compositions studied. This contradictory effect is explained by the marked increase in angiogenesis that takes place inside the bone defect, leading
  • Item
    Injectable mesoporous bioactive nanoparticles regenerate bone tissue under osteoporosis conditions
    (Acta Biomaterialia, 2022) Arcos Navarrete, Daniel; Gómez Cerezo, María Natividad; Saiz-Pardo Sanz, Melchor; Pablo Velasco, David de; Ortega Medina, Luis; Enciso, Silvia; Fernández Tomé, Blanca; Díaz Güemes, Idoia; Sánchez Margallo, Francisco Miguel; Casarrubios Palomar, Luis; Feito Castellano, María José; Portolés Pérez, María Teresa; Vallet Regí, María Dulce Nombre
    The osteogenic capability of mesoporous bioactive nanoparticles (MBNPs) in the SiO2–CaO system has been assessed in vivo using an osteoporotic rabbit model. MBNPs have been prepared using a double template method, resulting in spherical nanoparticles with a porous core-shell structure that has a high surface area and the ability to incorporate the anti-osteoporotic drug ipriflavone. In vitro expression of the pro-inflammatory genes NF-κB1, IL-6, TNF-α, P38 and NOS2 in RAW-264.7 macrophages, indicates that these nanoparticles do not show adverse inflammatory effects. An injectable system has been prepared by suspending MBNPs in a hyaluronic acid-based hydrogel, which has been injected intraosseously into cavitary bone defects in osteoporotic rabbits. The histological analyses evidenced that MBNPs promote bone regeneration with a moderate inflammatory response. The incorporation of ipriflavone into these nanoparticles resulted in a higher presence of osteoblasts and enhanced angiogenesis at the defect site, but without showing significant differences in terms of new bone formation.
  • Item
    Mesoporous bioactive glass/epsilon-polycaprolactone scaffolds promote bone regeneration in osteoporotic sheep
    (Acta Biomaterialia, 2019) Gómez Cerezo, María Natividad; Casarrubios Molina, Laura; Saiz-Pardo Sanz, Melchor; Ortega, Luis; de Pablo, David; Díaz-Güemes, Idoia; Fernández-Tomé, Blanca; Enciso, Sivlia; Sánchez-Margallo, Francisco Miguel; Portolés Pérez, María Teresa; Arcos Navarrete, Daniel; Vallet Regí, María Dulce Nombre
    Macroporous scaffolds made of a SiO2-CaO-P2O5 mesoporous bioactive glass (MBG) and epolycaprolactone (PCL) have been prepared by robocasting. These scaffolds showed an excellent in vitro biocompatibility in contact with osteoblast like cells (Saos 2) and osteoclasts derived from RAW 264.7 macrophages. In vivo studies were carried out by implantation into cavitary defects drilled in osteoporotic sheep. The scaffolds evidenced excellent bone regeneration properties, promoting new bone formation at both the peripheral and the inner parts of the scaffolds, thick trabeculae, high vascularization and high presence of osteoblasts and osteoclasts. In order to evaluate the effects of the local release of an antiosteoporotic drug, 1% (%wt) of zoledronic acid was incorporated to the scaffolds. The scaffolds loaded with zoledronic acid induced apoptosis in Saos 2 cells, impeded osteoclast differentiation in a time dependent manner and inhibited bone healing, promoting an intense inflammatory response in osteoporotic sheep.
  • Item
    CRISPR/Cas9 screenings unearth protein arginine methyltransferase 7 as a novel essential gene in prostate cancer metastasis
    (Cancer Letters, 2024) Rodrigo Faus, María; Vincelle-Nieto, África; Vidal, Natalia; Puente, Javier; Saiz-Pardo Sanz, Melchor; López-García, Alejandra; Mendiburu-Eliçabe Garganta, Marina; Palao, Nerea; Baquero, Cristina; Linzoain-Agos, Paula; Cuesta Martínez, Ángel; Qu, Hui Qi; Hakonarson, Hakon; Musteanu, Mónica Andrea; Reyes Palomares, Armando Adolfo; Porras Gallo, María Almudena; Bragado Domingo, Paloma; Gutiérrez Uzquiza, Álvaro
    Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.