Person:
Cabrera González, Justo Enrique

Loading...
Profile Picture
First Name
Justo Enrique
Last Name
Cabrera González
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Orgánica
Area
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 10 of 16
  • Item
    Reversible Optical Data Storage via Two-Photon Micropatterning of o‑Carboranes-Embedded Switchable Materials
    (Chemistry of Materials, 2023) Abdallah, Stephania; Mhanna, Rana; Cabrera González, Justo Enrique; Núñez, Rosario; Khitous, Amine ; Morlet-Savary, Fabrice ; Soppera, Olivier ; Versace, Davy-Louis ; Malval, Jean-Pierre
    Two-photon polymerization (2PP) constitutes a powerful light-triggered 3D stereolithography, allowing the fabrication of micro- or nanostructures with spatially encoded functionalities. In the present report, we take advantage of this programmable property in order to develop a photoresist authorizing the direct 2PP-lithography of luminescent switchable μ-structures. In this single step processing method, we highlight the pivotal role of a quadrupolar o-caborane initiator comprising a 9, 10-disubstituted anthracene core capable of chemically entrap oxygen-inhibiting species during the free radical two-photon initiation step. Such an O2 sequestration approach not only enhances the two-photon initiation performance of the polymerization, but also generates a non-luminescent endoperoxide by-product embedded in the polymerized macrostructure. Interestingly, simple heating of the final materials promotes endoperoxide thermolysis, resulting in the recovery of the luminescent o-carborane dye. This original luminescence turn OFF/ON property exhibits excellent fatigue resistance through a large number of alternated thermal and light stimuli cycles. The potential of this direct laser writing strategy for reversible data storage applications is finally demonstrated by the two-photon patterning of a series of matricially organized μ-structures used as rewritable binary optical memories which can be easily encoded on demand.
  • Item
    Photoluminescence in Carborane–Stilbene Triads: A Structural, Spectroscopic, and Computational Study
    (Chemistry - a European journal, 2016) Cabrera González, Justo Enrique; Viñas, Clara; Haukka, Matti; Bhattacharyya, Santanu; Gierschner, Johannes; Núñez, Rosario
    A set of triads in which o- and m-carborane clusters are bonded to two stilbene units through Ccluster−CH2 bonds was synthesized, and their structures were confirmed by X-ray diffraction. A study on the influence of the o- and m- isomers on the absorption and photoluminescence properties of the stilbene units in solution revealed no charge-transfer contributions in the lowest excited state, as confirmed by (TD)DFT calculations. The presence of one or two B−I groups in m-carborane derivatives does not affect the emission properties of the stilbenes in solution, probably due to the rather large distance between the iodo substituents and the fluorophore. Nevertheless, a significant redshift of the photoluminescence (PL) emission maximum in the solid state (thin films and powder samples) compared to solution was observed; this can be traced back to PL sensitization, most probably due to more densely packed stilbene moieties. Remarkably, the PL absolute quantum yields of powder samples are significantly higher than those in solution, and this was attributed to the restricted environment and the aforementioned sensitization. Thus, the bonding of the carborane clusters to two stilbene units preserves their PL behavior in solution, but produces significant changes in the solid state. Furthermore, iodinated species can be considered to be promising precursors for theranostic agents in which both imaging and therapeutic functions could possibly be combined.
  • Item
    Organotin dyes bearing anionic boron clusters as cell-staining fluorescent probes
    (Chemistry – A European Journal, 2018) Cabrera González, Justo Enrique
    Within the cell nucleus, in the nucleoli, ribosomal RNAs are synthesized and participate in several biological processes. To better understand nucleoli-related processes, their visualization is often required, for which specific markers are needed. Herein, we report the design of novel fluorescent organotin compounds derived from 4-hydroxy-N′-((2-hydroxynaphthalen-1-yl)methylene)benzohydrazide and their cytoplasm and nucleoli staining of B16F10 cells in vitro. Tin compounds bearing an aliphatic carbon chain (-C12H25) and an electron-donating group (-OH) were prepared, and the latter could be derivatized to bear the boron cluster anions [B12H12]2− and [3,3′-Co(1,2-C2B9H11)2]− (COSAN). All of the conjugates have been fully characterized and their luminescence properties have been assessed. In general, they show good quantum yields in solution (24–49 %), those for the COSAN derivatives being lower. Remarkably, the linking of [B12H12]2− and COSAN to the complexes made them more soluble, without being detrimental to their luminescence properties. Living B16F10 cells were treated with all of the compounds to determine their fluorescence staining properties; the compounds bearing the aliphatic chain showed a reduced staining capacity due to the formation of aggregates. Notably, the complexes bearing different boron clusters showed different staining effects; those bearing [B12H12]2− showed extraordinary staining of the nucleoli and cytoplasm, whereas those bearing COSAN were only detected in the cytoplasm. The remarkable fluorescence staining properties shown by these organotin compounds make them excellent candidates for fluorescence bioimaging in vitro.
  • Item
    Ru(II) and Ir(III) phenanthroline-based photosensitisers bearing o-carborane: PDT agents with boron carriers for potential BNCT
    (Biomaterials Science, 2021) Conway-Kenny, Robert ; Ferrer-Ugalde, Albert ; Careta, Oriol ; Cui, Xiaoneng ; Zhao, Jianzhang; Nogués, Carme ; Núñez, Rosario ; Cabrera González, Justo Enrique; Draper, Sylvia M.
    Four novel transition metal-carborane photosensitisers were prepared by Sonogashira cross-coupling of 1-(4-ethynylbenzyl)-2-methyl-o-carborane (A-CB) with halogenated Ru(II)- or Ir(III)-phenanthroline complexes. The resulting boron-rich complexes with one (RuCB and IrCB) or two carborane cages (RuCB2 and IrCB2) were spectroscopically characterised, and their photophysical properties investigated. RuCB displayed the most attractive photophysical properties in solution (λem 635 nm, τT 2.53 μs, and φp 20.4%). Nanosecond time-resolved transient absorption studies were used to explore the 3MLCT nature of the triplet excited states, and the highest singlet oxygen quantum yields (ΦΔ) were obtained for the mono-carborane-phenanthroline complexes (RuCB: 52% and IrCB: 25%). None of the complexes produce dark toxicity in SKBR-3 cells after incubation under photodynamic therapy (PDT) conditions. Remarkably, mono-carboranes RuCB and IrCB were the best internalised by the SKBR-3 cells, demonstrating the first examples of tris-bidentate transition metal-carborane complexes acting as triplet photosensitisers for PDT with a high photoactivity; RuCB or IrCB killed ∼50% of SKBR-3 cells at 10 μM after irradiation. Therefore, the high-boron content and the photoactive properties of these photosensitisers make them potential candidates as dual anti-cancer agents for PDT and Boron Neutron Capture Therapy (BNCT).
  • Item
    Highly Dispersible and Stable Anionic Boron Cluster-Graphene Oxide Nanohybrids
    (Chemistry - A European Journal, 2016) Cabrera González, Justo Enrique
    An efficient process to produce boron cluster-graphene oxide nanohybrids that are highly dispersible in water and organic solvents is established for the first time. Dispersions of these nanohybrid materials in water were extraordinarily stable after one month. Characterization of hybrids after grafting of appropriate cobaltabisdicarbollide and closo-dodecaborate derivatives onto the surface of graphene oxide (GO) was done by FT-IR, XPS, and UV/Vis. Thermogravimetric analysis (TGA) clearly shows a higher thermal stability for the modified-GO nanohybrids compared to the parent GO. Of particular note, elemental mapping by energy-filtered transmission electron microscopy (EFTEM) reveals that a uniform decoration of the graphene oxide surface with the boron clusters is achieved under the reported conditions. Therefore, the resulting nanohybrid systems show exceptional physico-chemical and thermal properties, paving the way for an enhanced processability and further expanding the range of application for graphene-based materials.
  • Item
    Fluorescent carborane-vinylstilbene functionalised octasilsesquioxanes: Synthesis, structural, thermal and photophysical properties
    (Journal of Materials Chemistry C, 2017) Cabrera González, Justo Enrique
    A new set of four different fluorescent boron-rich hybrids based on an octasilsesquioxane core (T8) are presented herein. The syntheses have been carried out starting from styrene-containing ortho- and meta-carboranes and an adequately substituted octasilsesquixane derivative (p-BrStyrenylOS) via Heck coupling reaction. The carborane clusters are attached to the T8 core through para-substituted stilbene spacers, which act as the main electronic donor of the molecule and as a result are responsible for the photoluminescence properties of the hybrids. These have been assessed in DCM solution, concluding that the presence of the carborane clusters plays a key role in the increase of the fluorescence emission displayed by the hybrids. A comparative study of different substituents (H, Me or Ph) linked to the adjacent carbon atom of the ortho-cluster revealed that the unsubstituted o-carborane derivative (POSS-H) has a much higher quantum yield in solution (ΦF = 59%) than its two counterparts. Besides, a comparison between two hybrids containing phenyl-substituted ortho- (POSS-Ph) and meta-carborane (POSS-mPh), demonstrated a significantly higher emission enhancement by the latter, backing the results we have previously reported for similar systems. In the solid state, the emission is largely quenched in all cases (ΦF = 4 to 7%) as well as bathochromically shifted due to considerable intermolecular interactions. Finally, the thermal resistances of these hybrids were tested by TGA under an inert atmosphere, unveiling weight losses as low as 15.8% and proving that the attachment of the carborane moieties to the T8 core outstandingly improves the thermal stability of the final POSS.
  • Item
    Blue Emitting Star-Shaped and Octasilsesquioxane-Based Polyanions Bearing Boron Clusters. Photophysical and Thermal Properties
    (Molecules, 2020) Cabrera González, Justo Enrique; Chaari, Mahdi; Teixidor, Francesc; Viñas, Clara; Núñez, Rosario
    High boron content systems were prepared by the peripheral functionalisation of 1,3,5-triphenylbenzene (TPB) and octavinylsilsesquioxane (OVS) with two different anionic boron clusters: closo-dodecaborate (B12) and cobaltabisdicarbollide (COSAN). TPB was successfully decorated with three cluster units by an oxonium ring-opening reaction, while OVS was bonded to eight clusters by catalysed metathesis cross-coupling. The resulting compounds were spectroscopically characterised, and their solution-state photophysical properties analysed. For TPB, the presence of COSAN dramatically quenches the fluorescence emission (λem = 369 nm; ΦF = 0.8%), while B12-substituted TPB shows an appreciable emission efficiency (λem = 394 nm; ΦF = 12.8%). For octasilsesquioxanes, the presence of either COSAN or B12 seems to be responsible for ∼80 nm bathochromic shift with respect to the core emission, but both cases show low emission fluorescence (ΦF = 1.4–1.8%). In addition, a remarkable improvement of the thermal stability of OVS was observed after its functionalisation with these boron clusters.
  • Item
    Multinuclear Ru(II) and Ir(III) decorated tetraphenylporphyrins as efficient PDT agents
    (Biomaterials Science, 2019) Cabrera González, Justo Enrique
    Two novel porphyrin-core systems were prepared by Sonogashira cross-coupling of the terminal alkyne groups of meso-tetra(4-ethynylphenyl)porphyrin-Zn(ii) (P-1) with halogenated Ru(ii)- or Ir(iii)-phenanthroline complexes. The resulting compounds (P-Ru and P-Ir) were spectroscopically characterised and their photophysical properties were investigated (λem 625, 665 nm; τT 339.6 μs (P-Ru) and λem 530, 612, 664 nm; τT 396.6 μs (P-Ir)). Nanosecond time-resolved transient absorption studies were used to explore the 3MLCT nature of the triplet excited states, and the singlet oxygen quantum yields were determined (ΦΔ 44.8 (P-Ru), 33.2 (P-Ir)%). The subcellular uptake of P-Ru and P-Ir and their application as photosensitisers (PS) in photodynamic therapy (PDT) were explored due to their solution photophysics and absence of dark toxicity. Upon irradiation (λexc = 620-630 nm; 10 min; 33 J cm-2), both P-Ru and P-Ir killed 90% of SKBR-3 cells at 1 μM. Notably P-Ru induced a 77% decrease in cell viability at only 0.25 μM.
  • Item
    A 3D Peptide/[60]Fullerene hybrid for multivalent recognition
    (Angewandte Chemie International Edition, 2022) Gallego, Iván; Ramos‐Soriano, Javier; Méndez‐Ardoy, Alejandro; Cabrera González, Justo Enrique; Lostalé‐Seijo, Irene; Illescas Martínez, Beatriz María; Martín León, Nazario; Reina, Jose; Montenegro, Javier
    Fully substituted peptide/[60]fullerene hexakis‐adducts offer an excellent opportunity for multivalent protein recognition. In contrast to monofunctionalized fullerene hybrids, peptide/[60]fullerene hexakis‐adducts display multiple copies of a peptide in close spatial proximity and in the three dimensions of space. High affinity peptide binders for almost any target can be currently identified by in vitro evolution techniques, often providing synthetically simpler alternatives to natural ligands. However, despite the potential of peptide/[60]fullerene hexakis‐adducts, these promising conjugates have not been reported to date. Here we present a synthetic strategy for the construction of 3D multivalent hybrids that are able to bind with high affinity the E‐selectin. The here synthesized fully substituted peptide/[60]fullerene hybrids and their multivalent recognition of natural receptors constitute a proof of principle for their future application as functional biocompatible materials.
  • Item
    Tetrakis{[(p-dodecacarboranyl)methyl]stilbenyl}ethylene:A Luminescent Tetraphenylethylene (TPE) Core System
    (European Journal of Inorganic Chemistry, 2017) Cabrera González, Justo Enrique
    The synthesis and spectroscopic characterization of the first set of tetrakis{[(p-dodecacarboranyl)methyl]stilbenyl}ethylenes (TDSE), substituted either with a methyl or a phenyl group in the 2-position (Ccluster) of the ortho-carborane, are described. The complex absorption properties are elucidated by TD-DFT calculations, stressing the importance of through-bond conjugation. Enhanced conjugation and restriction of the conformational space are identified as the main factors for boosted luminescence properties in solution, compared with the tetraphenylethylene (TPE) core, effectively reducing internal conversion (IC). IC is further reduced when aggregate suspensions of our compounds are formed in water, providing highly luminescent materials of quasi-isolated (very weakly interacting) emitters.