Person:
Cabrera González, Justo Enrique

Loading...
Profile Picture
First Name
Justo Enrique
Last Name
Cabrera González
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Orgánica
Area
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Synthesis and self-assembly of a carboranecontaining ABC triblock terpolymer: morphology control on a dual-stimuli responsive system
    (Polymer Chemistry, 2019) Fernáncez Alvarez, Roberto; Hlavatovicová, Eva; Rodzén, Krzysztof; Strachota, Adam; Kereïche, Sami; Matejicek, Pavel; Cabrera González, Justo Enrique; Núñez, Rosario; Uchman, Mariusz
    Amphiphilic triblock terpolymers have attractive applications in the preparation of nanoparticles with controlled morphology. An additional level of morphology control can be provided by reactive blocks, whose interactions with the solvent vary under different stimuli. In this work, we synthesized a triblock terpolymer (poly(acrylic acid)-b-poly(4-hydroxystyrene)-b-poly{1-[4-(1-methyl-1,2-dicarba-closo-dodecaborane-2-yl methyl)-phenyl]ethylene}) (PAA-b-PHS-b-PSC) containing carboranes as pendant groups by reversible addition fragmentation chain transfer (RAFT) polymerization and subsequently studied its behavior in aqueous solution. Once the nanoparticles were formed, the solubility of the second and third blocks was changed via pH and CsF reactions, respectively. The resulting micelles work as an ON/OFF system, using changes in fluorescence intensity at different pH values.
  • Item
    A 3D Peptide/[60]Fullerene hybrid for multivalent recognition
    (Angewandte Chemie International Edition, 2022) Cabrera González, Justo Enrique; Illescas Martínez, Beatriz María; Martín León, Nazario; Gallego, Iván; Ramos‐Soriano, Javier; Méndez‐Ardoy, Alejandro; Irene Lostalé‐Seijo; Jose J. Reina; Javier Montenegro
    Fully substituted peptide/[60]fullerene hexakis‐adducts offer an excellent opportunity for multivalent protein recognition. In contrast to monofunctionalized fullerene hybrids, peptide/[60]fullerene hexakis‐adducts display multiple copies of a peptide in close spatial proximity and in the three dimensions of space. High affinity peptide binders for almost any target can be currently identified by in vitro evolution techniques, often providing synthetically simpler alternatives to natural ligands. However, despite the potential of peptide/[60]fullerene hexakis‐adducts, these promising conjugates have not been reported to date. Here we present a synthetic strategy for the construction of 3D multivalent hybrids that are able to bind with high affinity the E‐selectin. The here synthesized fully substituted peptide/[60]fullerene hybrids and their multivalent recognition of natural receptors constitute a proof of principle for their future application as functional biocompatible materials.
  • Item
    C60-based Multivalent Glycoporphyrins Inhibit SARS-CoV-2 Specific Interaction with the DC-SIGN Transmembrane Receptor
    (Small, 2023) Rafael Delgado; Cabrera González, Justo Enrique; Illescas Martínez, Beatriz María; Martín León, Nazario; Canales Mayordomo, María Ángeles; López Montero, Iván; Delgado Vázquez, Rafael
    Since WHO has declared the COVID-19 outbreak a global pandemic, nearly seven million deaths have been reported. This efficient spread of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is facilitated by the ability of the spike glycoprotein to bind multiple cell membrane receptors. Although ACE2 is identified as the main receptor for SARS-CoV-2, other receptors could play a role in viral entry. Among others, C-type lectins such as DC-SIGN are identified as efficient trans-receptor for SARS-CoV-2 infection, so the use of glycomimetics to inhibit the infection through the DC-SIGN blockade is an encouraging approach. In this regard, multivalent nanostructures based on glycosylated [60]fullerenes linked to a central porphyrin scaffold have been designed and tested against DC-SIGN-mediated SARS-CoV-2 infection. First results show an outstanding inhibition of the trans-infection up to 90%. In addition, a deeper understanding of nanostructure-receptor binding is achieved through microscopy techniques, high-resolution NMR experiments, Quartz Crystal Microbalance experiments, and molecular dynamic simulations.