Person:
Muñoz Martín, Alfonso

Loading...
Profile Picture
First Name
Alfonso
Last Name
Muñoz Martín
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Geológicas
Department
Geodinámica, Estratigrafía y Paleontología
Area
Geodinámica Interna
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 8 of 8
  • Item
    Local stress fields and intraplate deformation of Iberia: variations in spatial and temporal interplay of regional stress sources
    (Tectonophysics, 1999) Andeweg, Bernd; Vicente Muñoz, Gerardo de; Cloetingh, Sierd; Giner, Jorge; Muñoz Martín, Alfonso
    Tertiary to present deformation in the interior of the Iberian Peninsula reflects spatial and temporal variations of the activity of the plate boundaries. Local deformation patterns observed in many of the numerous intraplate Tertiary basins and their borders, such as the Madrid Basin and the Sierra de Altomira, are at first sight incompatible with the regional stress field under which they were formed. We demonstrate, however, that they can be explained as the effect of several stress fields that acted on the Iberian Peninsula from earliest Tertiary onward. Data on local deformation can constrain both magnitudes and directions of forces acting on the plate boundaries of Iberia, enabling us to estimate the relative importance of the different plate driving and deforming mechanisms providing further constraints on the tectonic evolution of Iberia.
  • Item
    Finite-element modelling of Tertiary paleostress fields in the eastern part of the Tajo Basin (central Spain)
    (Tectonophysics, 1998) Muñoz Martín, Alfonso; Cloetingh, Sierd; Vicente Muñoz, Gerardo de; Andeweg, Bernd
    Three subsequent Tertiary paleostress fields that are deduced from fault-slip data for the eastern part of the Tajo Basin are analyzed by finite-element studies. The modelling results show that maximum horizontal stresses (SHmax) are mainly controlled by the geometry of the model limits and the boundary conditions applied. The models are used to test two hypotheses on the origin of the Altomira Range. A local stress field responsible for its formation (‘Altomira') can be modelled successfully by superposition in time and place of two major paleostress fields (‘Iberian' and ‘Guadarrama'). Stress trajectories have been modelled with respect to a homogeneous cover and heterogeneous basement to investigate the role of rheological contrasts between different basement blocks on the orientation of the stress field. Results of this kind of modelling suggest a mechanical decoupling between the cover and the basement, especially for the ‘Altomira' paleostress field.
  • Item
    Análisis tensorial de la deformación superpuesta en el límite oriental de la cuenca de Madrid
    (Cadernos do Laboratorio Xeolóxico de Laxe, 1994) Muñoz Martín, Alfonso; Vicente Muñoz, Gerardo de; González Casado, José Manuel
    An analysis of Neogene brittle deformation using fault population analysis methods has been carried out between the SW border of the Iberian Range and Altomira Range. Two main paleostress fields have been established: 1) N70E - N120E compression (Altomira paleostress field) ofLate Oligocene - Early Miocene age that induced the formation of the SW border of Iberian Range and Altomira - Pareja thrust belts with reverse and strike-slip faults. 2) N140-N160E compression (Guadarrama paleostress field) of Middle Aragonian - early Pleistocene age that reactivated previous faults with strikeslip movement along the Iberian Range. A superposition of two regional stress fields (Iberian and Guadarrama) is proposed to explain E-W compression that formed Altomira Range. Stress tensorial additions have been realized to check this hypothesis.
  • Item
    Origen y relación entre las deformaciones y esfuerzos alpinos en la zona centro-oriental de la Península Ibérica
    (Revista de la Sociedad Geológica de España, 1998) Muñoz Martín, Alfonso; Vicente Muñoz, Gerardo de
    En este trabajo se realiza una correlación entre los principales datos estructurales, cinemáticos, paleogeográficos, y de resultados de modelos de elementos finitos obtenidos en el borde oriental de la Cuenca del Tajo, con numerosos trabajos previos realizados por otros autores. La integración de estas fuentes de información ha permitido establecer una evolución conjunta para el sector centro-oriental de la placa Ibérica en dos episodios principales: a) El primero está relacionado con una fuerte actividad en el margen N de la placa Ibérica, desde los 5 1 Ma hasta los 38 Ma (Eoceno inferior - Oligoceno inferior), en la que se produciría la estructuración Pirenaica principal. Durante este periodo se desarrollarían, relacionados con el antepaís pirenaico, los siguientes cinturones de deformación bajo un campo de esfuerzos general NNE-SSO a NE-SO: la Rama Aragonesa de la Cordillera Ibérica y el sector meridional de la Sierra de Altomira y, en menor medida, la Rama Castellana de la Cordillera Ibérica y el Sistema Central. Durante el Oligoceno superior- Mioceno inferior (entre los 38 Ma y los 24 Ma) se desarrolló una etapa intermedia con actividad tectónica simultánea en los márgenes N y S de la placa Ibérica. Asociada a esta etapa se desarrolló un campo de paleoesfuerzos local compresivo E-O en la zona de antepaís común de los Pirineos y las Béticas, responsable de la estructuración principal de los sectores central y septentrional de la Sierra de Altomira. La Sierra de Altomira se interpreta como un escape o extrusión de la cobertera hacia el O, favorecido por la presencia de niveles incompetentes del Triásico superior. En este periodo comienzó también el desarrollo de la actividad extensiva en el borde oriental de la península en relación a la apertura del Golfo de Valencia. b) Finalmente, durante el Mioceno medio - actualidad, se desarrolla una mayor actividad en el margen S de la placa Ibérica (estructuración de las Cordilleras Béticas), si bien permanece una cierta actividad en el margen N, como lo demuestra la presencia de sismicidad moderada a lo largo del margen Cantábrico-Pirenaico. Durante este periodo se desarrollaron una serie de deformaciones intraplaca en el antepaís Bético bajo un campo de esfuerzos regional NO-SE: El Sistema Central y la Rama Castellana de la Cordillera Ibérica. Este proceso aparece complicado por dos procesos tectónicos que generaron extensión: 1) Al este en relación a los procesos de rifting del Golfo de Valencia, y al oeste de la Cordillera Ibérica, y a partir del Mioceno superior, en relación a flexiones corticales NE-SO transversales a la dirección regional de σ HMAX. [ABSTRACT] A correlation amongst macro and mesostructural analysis results, kinematic and paleogeographic data, paleostresses and finite element models results has been established in the eastern border of the Tajo Basin. This comparison allows us to establish an evolutionary pattern for the central part of the Iberian plate in two main episodes: a) The first one was related to a strong tectonic activity in the northern border of the Iberian plate during the Lower Eocene to the Upper Oligocene (Pirenees uplift). In this period, the following intraplate chains were formed in the Pyrenees foreland under a regional NNE-SSO compressive stress field: the Aragonian Branch of the Iberian Range and the southern part of the Altomira Range, and to a lesser extent, the Castillian Branch of the Iberian Range and the Spanish Central System. During the Upper Oligocene and Lower Miocene a transition between the two main episodes, with tectonic activity in both borders of the Iberian plate (Pyrenees and Betics), took place. Related to this episode a E-O local compressive stress field is developed in the eastern border of the Tajo Basin (Altomira Stress field). This stress field generated a N-S fold and thrust belt west verging that affected the Mesozoic cover. Thus, the Altomira Range is interpreted as a cover extrusion westwards in a regional N-S compression supported by the presence of evaporitic Upper Triassic rocks and the presence of normal basement faults. During this period extension processes in the eastern border of the Iberian plate began associated with the opening of the Valencia Through. b) Finally, from Middle Miocene to Present the main tectonic activity has been developed in the southern border of the Iberian Plate (Betics). However, sorne tectonic activity remained in the northern border of the Iberian plate as it is shown by sorne moderate seismic activity along the Pyrenees and the Cantabrian margino In this period sorne intraplate deformations were developed in the Betic foreland under a NW-SE regional stress field: Spanish Central System and the Castillian Branch of the Iberian Range. This main sketch is complicated by two different extensional processes: 1) doming related to opening of the Valencia Trough, and 2) superficial extension along NE-SO litospheric folding formed perpendicular to the regional Valencia Through. b) Finally, from Middle Miocene to Present the main tectonic activity has been developed in the southern border of the Iberian Plate (Betics). However, sorne tectonic activity remained in the northern border of the Iberian plate as it is shown by sorne moderate seismic activity along the Pyrenees and the Cantabrian margino In this period sorne intraplate deformations were developed in the Betic foreland under a NW-SE regional stress field: Spanish Central System and the Castillian Branch of the Iberian Range. This main sketch is complicated by two different extensional processes: 1) doming related to opening of the Valencia Trough, and 2) superficial extension along NE-SO litospheric folding formed perpendicular to the regional σHMAX.
  • Item
    Determination of present-day stress tensor and neotectonic interval in the Spanish Central System and Madrid Basin, central Spain
    (Tectonophysics, 1996) Vicente Muñoz, Gerardo de; Giner, Jorge; Muñoz Martín, Alfonso; González Casado, José Manuel; Lindo, Rubén
    A brittle deformation tectonic analysis was performed in central Spain (Spanish Central System and Madrid Basin) in order to decipher and understand the deformation processes that take place in a typical intracontinental zone. 1174 fault slickensides obtained in materials with ages between Late Cretaceous and Quaternary have been analyzed by means of fault population analysis methods to reconstruct paleostress tensors. Nine earthquake focal mechanisms have been determined, with magnitudes ranging between 3 and 4.1. With regard to regional structural features and sedimentary record data, the characteristics of present-day and neotectonic stress fields have been figured out, which determine the neotectonic period for this region. Thus, we have established that the intraplate zone represented by central Spain has been subjected to a stress field from the Middle Miocene until the present-day with a largest horizontal shortening direction (SHMAX) located between N130E and N160E. Finally, three paleostress maps with the main active structures are presented for: (a) Middle Miocene to Late Miocene, the period when the Spanish Central System was mainly formed, (b) Late Miocene to Quaternary, and (c) the present-day stress field, deduced from earthquake focal mechanisms.
  • Item
    El uso del método de los diedros rectos: implicaciones a partir del modelo de deslizamiento del análisis poblacional de fallas
    (Revista de la Sociedad Geológica de España, 1992) Vicente Muñoz, Gerardo de; Muñoz Martín, Alfonso; Giner, Jorge
    El modelo de deslizamiento implica una simetría ortorrómbica de las fallas que se mueven bajo un mismo campo deformacional. Se analizan los diagramas de diedros rectos producidos por la adición de las fallas con las simetrías que predice el modelo de deslizamiento para dos elipsoides de deformación distintos, teniendo en cuenta posibles dispersiones en las orientaciones de las fallas. Se establecen las pautas características de éstas, discutiéndose la validez de las orientaciones de los ejes principales del elipsoide de esfuerzos que se deducen, especialmente cuando éstos aparecen inclinados a partir de la adición de dos figuras con un eje principal en la vertical. Se analizan dos ejemplos de aplicación en dos situaciones tectónicas distintas, comprobándose que la combinación de dos tipos de fallas distintos (ej. fallas inversas mas desgarres) produce la existencia aparente de ejes principales inclinados. Por último se adjunta un apéndice para la rápida informatización del método. Abstract: Slip model of brittle deformation implies an orthorhombic symmetry of faults moving under an unique strain field. Right dihedra diagrams of these symmetries have been analyzed additioned by couples taking into account possible dispersions in fault trends. Characteristics patterns of these additions have been stablished, discusing the validity of the deduced plunging axes orientations. finally, an appendix is atteched showing a fast way to program the method.
  • Item
    Evolución y estructuras alpinas en la zona del centro peninsular
    (Cuadernos do Laboratorio Xeolóxico de Laxe, 1994) Vicente Muñoz, Gerardo de; González Casado, J.M.; Calvo Sorando, José Pedro; Muñoz Martín, Alfonso; Giner, J.; Rodríguez Pascua, M.A.
    In this paper we propose a model of tectonic and sedimentary evolution of the Spanish Central System, Toledo Mountains, Iberian - Altomira Ranges and Madrid Basin during the CenozoiCo This model hase been established from the analysis of: balanced cross sections, macro and microstructural data (analysis of brittle deformation) and the sedimentary record of Madrid Basin. These structural units, have been evolved during the Neogene, under the stress fields transmitted from the active Iberian Plate borders, the Betic and the Pyrenees. The superposition of these two regional stress tensors produces locally the «Altomira» stress field. The evolution and superposition of these regional stress fields is a gradual and long term process.
  • Item
    Cuantificación del acortamiento alpino y estructura en profundidad del extremo sur-occidental de la Cordillera Ibérica (sierras de Altomira y Bascuñana)
    (Revista de la Sociedad Geológica de España, 1998) Muñoz Martín, Alfonso; Vicente Muñoz, Gerardo de
    En este trabajo se describe la estructura en profundidad del extremo sur-occidental de la Cordillera Ibérica, a partir de la integración de datos estructurales, sísmicos y gravimétricos. Estos datos han permitido la construcción de dos mapas de isobatas, uno para el techo del basamento, y otro para el techo del Cretácico superior, así como la construcción de seis cortes geológicos equilibrados transversales a las principales estructuras de la cobertera. La estructura del basamento está definida, fundamentalmente, por fallas normales que controlan el espesor de las unidades sedimentarias mesozoicas. Se han distinguido tres bloques separados por importantes zonas de fractura: el bloque de la Cuenca de Madrid, de naturaleza granítico-gneísica, y muy poco fracturado, el bloque de Valdeolivas, compuesto por sedimentos metamórficos paleozoicos y una densidad de fracturación moderada, y el bloque de Cuenca, de composición heterogénea y elevada densidad de fracturación. La cobertera se encuentra despegada del basamento a favor de las facies plásticas del Triásico superior, siendo las estructuras dominantes los cabalgamientos y pliegues asociados, limitados lateralmente por zonas de transferencia. La localización de los cabalgamientos y de las zonas de transferencia en la cobertera está claramente asociada a la presencia de fallas normales en el basamento. El grado de acortamiento alpino calculado en la cobertera presenta una distribución espacial bien definida: el acortamiento es máximo (16 Km) en el sector central de la Sierra de Altomira, decreciendo hasta desaparecer hacia el N. Desde la zona de falla de Tarancón hacia el S, las estructuras compresivas N-S se amortiguan y se superponen a las de orientación NO-SE, desarrolladas anteriormente.