Person:
Sánchez Brea, Luis Miguel

Loading...
Profile Picture
First Name
Luis Miguel
Last Name
Sánchez Brea
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Óptica
Area
Optica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 26
  • Item
    Near field diffraction of steel tape gratings illuminated with finite-size incoherent sources
    (Optik, 2022) Torcal Milla, Francisco José; Sánchez Brea, Luis Miguel
    Steel tape gratings are diffraction gratings engraved on a steel substrate, whose slits are commonly manufactured by laser ablation. They behave as amplitude diffraction gratings, since the engraved slits act as strong scatters. Here, we extend previous works to the case of finite-size illumination sources, as they are used in applications such as optical encoders, where LEDs are commonly used as illumination sources. We obtain an analytical formulation for the near field behavior of this kind of gratings. When the light source increases its size, a decreasing in the contrast of the self-images is added to the effect of the surficial roughness. The agreement between analytical and numerical results is high, validating the obtained formulation. Besides, these results could be crucial in metrological applications in which steel tape gratings or other diffractive optical elements engraved on steel substrates are used, providing with a theoretical formalism to analyze the near field propagation of light after reflecting in them.
  • Item
    Double grating systems with one steel tape grating
    (Optics Communications, 2008) Torcal Milla, Francisco José; Sánchez Brea, Luis Miguel; Bernabeu Martínez, Eusebio
    Steel tape gratings are used in different metrology applications. As the period of these gratings was large (around 100μm,), its analytical study has been performed, up to date, using a geometrical approach. Nowadays, steel tape gratings can be manufactured with lower periods, around 20–40 μm, and diffractive effects must be taken into account. Also, due to the roughness of the surface, statistical techniques need to be considered to analyze their behavior. In this work, an analysis of the pseudo-imaging formation in a double grating system including one steel tape grating is performed. In particular Moiré and Lau configurations are analyzed. We have found that roughness significantly affects to Moiré configuration. However, its effect is negligible in Lau configuration. Generalized grating imaging configuration is also studied in depth. It is shown that roughness does not affect to the contrast of pseudoimages, but it modifies their depth of focus.
  • Item
    Near field of stacked diffraction gratings
    (Optik, 2013) Torcal Milla, Francisco José; Sánchez Brea, Luis Miguel; Bernabeu Martínez, Eusebio
    We obtain a general analytical formulation for determining the near field produced by N diffraction gratings disposed in stack using a scalar approximation. Parameters of the gratings such as type-amplitude/phase-, fill factors, periods and relative positions between gratings along the x and y axes are considered. The obtained formulation is useful for analyzing problems which involve several diffraction gratings, such as optical encoders since it is computationally faster than integral formulations. Finally, analytical results are compared with numerical simulations based on the Rayleigh–Sommerfeld equation.
  • Item
    Far field diffraction of gratings with two roughness levels
    (Journal of optics, 2019) Torcal Milla, Francisco José; Sánchez Brea, Luis Miguel
    We investigate the far field diffraction process produced by diffraction gratings with two roughness levels, such as steel tape gratings, which are used in environments where diffraction gratings made of glass are not possible. We obtain the analytical formulation describing the formation of diffraction orders in terms of the roughness parameters. Since roughness is stochastic, we use the mutual coherence function to propagate the field to the Fraunhofer regime. We conclude that diffraction orders exists when at least one correlation length of both roughness is larger than the period of the grating and the standard deviation on heights is around or larger than the illumination wavelength. Finally, we corroborate the analytical results with numerical simulations based on the fast Fourier transform, showing a high agreement.
  • Item
    Variogram-based method for contrast measurement
    (Applied Optics, 2007) Sánchez Brea, Luis Miguel; Torcal Milla, Francisco José; Bernabeu Martínez, Eusebio
    We present a technique for determining the contrast of an intensity distribution in the presence of additive noise and other effects, such as undesired local amplitude or offset variations. The method is based on the variogram function. It just requires the measurement of the variogram at only four points and, as a consequence, it is very fast. The proposed technique is compared with other standard techniques, showing a reduction in the error of the contrast measurement.
  • Item
    Near-field diffraction-based focal length determination technique
    (Optics and lasers in engineering, 2017) Torcal Milla, Francisco José; Sánchez Brea, Luis Miguel
    An accurate and simple technique for determining the focal length of a lens is presented. It consists of measuring the period of the fringes produced by a diffraction grating at the near field when it is illuminated with a beam focused by the unknown lens. In paraxial approximation, the period of the fringes varies linearly with the distance. After some calculations, a simple extrapolation of data is performed to obtain the locations of the principal plane and the focal plane of the lens. Thus, the focal length is obtained as the distance between the two mentioned planes. The accuracy of the method is limited by the collimation degree of the incident beam and by the algorithm used to obtain the period of the fringes. We have checked the technique with two commercial lenses, one convergent and one divergent, with nominal focal lengths (+100±1) mm and (−100±1) mm respectively. We have experimentally obtained the focal lengths resulting into the interval given by the manufacturer but with an uncertainty of 0.1%, one order of magnitude lesser than the uncertainty given by the manufacturer.
  • Item
    Self-imaging technique for beam collimation
    (Optics letters, 2014) Sánchez Brea, Luis Miguel; Torcal Milla, Francisco José; Herrera Fernández, José María; Morlanes, Tomás; Bernabeu Martínez, Eusebio
    A simple collimation technique based on measuring the period of one self-image produced by a diffraction grating is proposed. Transversal displacement of the grating is not required, and then automatic single-frame processing can be performed. The self-image is acquired with a CMOS camera, and the period is computed using the variogram function. Analytical and experimental results are obtained, which show the simplicity and accuracy of the proposed technique.
  • Item
    Fast optical source for quantum key distribution based on semiconductor optical amplifiers
    (Optics Express, 2011) Jofre, Marc; Gardelein, Arnaud; Anzolin, Gabriele; Amaya, Waldimar; Capmany Francoy, José; Ursin, Rupert; Peñate Quesada, Laura; López Molina, Demetrio; San Juan, J. L.; Carrasco, José Antonio; García de Quirós, Francisco; Torcal Milla, Francisco José; Sánchez Brea, Luis Miguel; Bernabeu Martínez, Eusebio; Perdigues Armengol, Josep Maria; Jennewein, Thomas; Pérez Torres, Juan; Mitchell, Morgan W.; Pruneri, Valerio
    A novel integrated optical source capable of emitting faint pulses with different polarization states and with different intensity levels at 100 MHz has been developed. The source relies on a single laser diode followed by four semiconductor optical amplifiers and thin film polarizers, connected through a fiber network. The use of a single laser ensures high level of indistinguishability in time and spectrum of the pulses for the four different polarizations and three different levels of intensity. The applicability of the source is demonstrated in the lab through a free space quantum key distribution experiment which makes use of the decoy state BB84 protocol. We achieved a lower bound secure key rate of the order of 3.64 Mbps and a quantum bit error ratio as low as 1.14 × 10−2 while the lower bound secure key rate became 187 bps for an equivalent attenuation of 35 dB. To our knowledge, this is the fastest polarization encoded QKD system which has been reported so far. The performance, reduced size, low power consumption and the fact that the components used can be space qualified make the source particularly suitable for secure satellite communication.
  • Item
    Far field of gratings with rough strips
    (Journal of The Optical Society Of America A-Optics Image Science and Vision, 2008) Sánchez Brea, Luis Miguel; Torcal Milla, Francisco José; Bernabeu Martínez, Eusebio
    In this work, we analyze the far-field pattern produced by a grating made of strips with two different random roughness levels. The efficiency and shape of the diffraction orders is obtained, which are shown to depend on the statistical properties of roughness. We assume for the calculations that the grating can be used in a mobile mechanical system. A preliminary experimental approach which partially corroborates the theoretical results is also performed.
  • Item
    Dual self-image technique for beam collimation
    (Journal of optics, 2016) Herrera Fernández, José María; Sánchez Brea, Luis Miguel; Torcal Milla, Francisco José; Morlanes Calvo, Tomás; Bernabeu Martínez, Eusebio
    We propose an accurate technique for obtaining highly collimated beams, which also allows testing the collimation degree of a beam. It is based on comparing the period of two different self-images produced by a single diffraction grating. In this way, variations in the period of the diffraction grating do not affect to the measuring procedure. Self-images are acquired by two CMOS cameras and their periods are determined by fitting the variogram function of the self-images to a cosine function with polynomial envelopes. This way, loss of accuracy caused by imperfections of the measured self-images is avoided. As usual, collimation is obtained by displacing the collimation element with respect to the source along the optical axis. When the period of both self-images coincides, collimation is achieved. With this method neither a strict control of the period of the diffraction grating nor a transverse displacement, required in other techniques, are necessary. As an example, a LED considering paraxial approximation and point source illumination is collimated resulting a resolution in the divergence of the beam of σ φ = ± μrad.