Person:
Moya Cerero, Santiago De La

Loading...
Profile Picture
First Name
Santiago De La
Last Name
Moya Cerero
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Orgánica
Area
Química Orgánica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 4 of 4
  • Item
    Exploring BODIPY Derivatives as Singlet Oxygen Photosensitizers for PDT
    (Photochemistry and Photobiology, 2020) Prieto Moreno, Ruth; Prieto Castañeda, Alejandro; Sola Llano, Rebeca; Rodríguez Agarrabeitia, Antonia; García Fresnadillo, David; López Arbeloa, Íñigo María; Villanueva Oroquieta, Ángeles; Ortiz García, María Josefa; Moya Cerero, Santiago De La; Martínez Martínez, Virginia
    This minireview is devoted to honoring the memory of Dr. Thomas Dougherty, a pioneer of modern photodynamic therapy (PDT). It compiles the most important inputs made by our research group since 2012 in the development of new photosensitizers based on BODIPY chromophore which, thanks to the rich BODIPY chemistry, allows a finely tuned design of the photophysical properties of this family of dyes to serve as efficient photosensitizers for the generation of singlet oxygen. These two factors, photophysical tuning and workable chemistry, have turned BODIPY chromophore as one of the most promising dyes for the development of improved photosensitizers for PDT. In this line, this minireview is mainly related to the establishment of chemical methods and structural designs for enabling efficient singlet oxygen generation in BODIPYs. The approaches include the incorporation of heavy atoms, such as halogens (iodine or bromine) in different number and positions on the BODIPY scaffold, and also transition metal atoms, by their complexation with Ir(III) center, for instance. On the other hand, low‐toxicity approaches, without involving heavy metals, have been developed by preparing several orthogonal BODIPY dimers with different substitution patterns. The advantages and drawbacks of all these diverse molecular designs based on BODIPY structural framework are described.
  • Item
    Development of Geometry-Controlled All-Orthogonal BODIPY Trimers for Photodynamic Therapy and Phototheragnosis
    (Organic Letters, 2022) Prieto Castañeda, Alejandro; García Garrido, Fernando; Díaz Norambuena, Carolina; Escriche Navarro, Blanca; García Fernández, Alba; Bañuelos, Jorge; Rebollar, Esther; García Moreno, Inmaculada; Martínez Máñez, Ramón; Moya Cerero, Santiago De La; Rodríguez Agarrabeitia, Antonia; Ortiz García, María Josefa
    We have established an easy synthetic protocol for selectively developing all-orthogonal BODIPY trimers with unprecedented geometries on the basis of selecting methyl oxidation versus electrophilic formylation of key dimeric precursors. Photophysical characterization together with biological assays unraveled the most suitable BODIPY−BODIPY geometrical arrangements within the trimer, forcing them to serve as molecular platforms for the development of new, advanced heavy-atom-free photosensitizers for photodynamic therapy and phototheragnosis.
  • Item
    Formylation as a Chemical Tool to Modulate the Performance of Photosensitizers Based on Boron Dipyrromethene Dimers
    (International Journal of Molecular Sciences, 2023) Díaz Norambuena, Carolina; Avellanal Zaballa, Edurne; Prieto Castañeda, Alejandro; Bañuelos, Jorge; de la Moya, Santiago; Rodríguez Agarrabeitia, Antonia; Moya Cerero, Santiago De La; Ortiz, María J.
    Heavy-atom-free photosensitizers are envisioned as the next generation of photoactive molecules for photo-theragnosis. In this approach, and after suitable irradiation, a single molecular scaffold is able to visualize and kill tumour cells by fluorescence signalling and photodynamic therapy (PDT), respectively, with minimal side effects. In this regard, BODIPY-based orthogonal dimers have irrupted as suitable candidates for this aim. Herein, we analyse the photophysical properties of a set of formyl-functionalized BODIPY dimers to ascertain their suitability as fluorescent photosensitizers. The conducted computationally aided spectroscopic study determined that the fluorescence/singlet oxygen generation dual performance of these valuable BODIPY dimers not only depends on the BODIPY-BODIPY linkage and the steric hindrance around it, but also can be modulated by proper formyl functionalization at specific chromophoric positions. Thus, we propose regioselective formylation as an effective tool to modulate such a delicate photonic balance in BODIPY-based dimeric photosensitizers. The taming of the excited-state dynamics, in particular intramolecular charge transfer as the key underlying process mediating fluorescence deactivation vs. intersystem crossing increasing, could serve to increase fluorescence for brighter bioimaging, enhance the generation of singlet oxygen for killing activity, or balance both for photo-theragnosis.
  • Item
    BODIPYs revealing lipid droplets as valuable targets for photodynamic theragnosis
    (Chemical Communications, 2019) Tabero, Andrea; García-Garrido, Fernando; Prieto Castañeda, Alejandro; Palao, Eduardo; Rodríguez Agarrabeitia, Antonia; García-Moreno, Inmaculada; Villanueva Valdés, Miguel Ángel; Moya Cerero, Santiago De La; Ortiz, María José
    Endowing BODIPY PDT agents with the ability to probe lipid droplets is demonstrated to boost their phototoxicity, allowing the efficient use of highly fluorescent dyes (poor ROS sensitizers) as phototoxic agents. Conversely, this fact opens the way to the development of highly bright ROS photosensitizers for performing photodynamic theragnosis (fluorescence bioimaging and photodynamic therapy) from a single simple agent. On the other hand, the noticeable capability of some of the reported dyes to probe lipid droplets in different cell lines under different conditions reveals their use as privileged probes for advancing the study of interesting lipid droplets by fluorescence microscopy.