Person:
Prieto Ocejo, Dolores

Loading...
Profile Picture
First Name
Dolores
Last Name
Prieto Ocejo
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Fisiología
Area
Fisiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 10 of 29
  • Item
    Powerful Relaxation of Phosphodiesterase Type 4 Inhibitor Rolipram in the Pig and Human Bladder Neck
    (The Journal of Sexual Medicine, 2014) Fernandes Ribeiro, Ana Sofía; Fernandes, Vítor S.; Martínez Sáenz, Ana; Martínez Sainz, María Del Pilar; Barahona Gomáriz, María Victoria; Orensanz Muñoz, Luis Miguel; Blaha, Igor; Serrano Margüello, Daniel; Bustamante, Salvador; Carballido, Joaquín; García Sacristán, Albino; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    Introduction: Phosphodiesterase type 5 (PDE5) inhibitors act as effective drugs for the treatment of lower urinary tract symptom (LUTS). There is a poor information, however, about the role of the PDE4 inhibitors on the bladder outflow region contractility. Aim: To investigate PDE4 expression and the relaxation induced by the PDE4 inhibitor rolipram versus that induced by the PDE5 blockers sildenafil and vardenafil, in the pig and human bladder neck. Methods: Immunohistochemistry for PDE4 expression, myographs for isometric force recordings and fura-2 fluorescence for simultaneous measurements of intracellular Ca2+ concentration ([Ca2+]i ) and tension for rolipram in bladder neck samples were used. Main outcome measures: PDE4 expression and relaxations to PDE4 and PDE5 inhibitors and simultaneous measurements of [Ca2+]i and tension. Results: PDE4 expression was observed widely distributed in the smooth muscle layer of the pig and human bladder neck. On urothelium-denuded phenylephrine (PhE)-precontracted strips of pig and human, rolipram, sildenafil and vardenafil produced concentration-dependent relaxations with the following order of potency: rolipram> > sildenafil>vardenafil. In pig, the adenylyl cyclase activator forskolin potentiated rolipram-elicited relaxation, whereas protein kinase A (PKA) blockade reduced such effect. On potassium-enriched physiological saline solution (KPSS)-precontracted strips, rolipram evoked a lower relaxation than that obtained on PhE-stimulated preparations. Inhibition of large (BKCa ) and intermediate (IKCa ) conductance Ca2+ -activated K+ channels, neuronal voltage-gated Ca2+ channels, nitric oxide (NO) and hydrogen sulfide (H2 S) synthases reduced rolipram responses. Rolipram inhibited the contractions induced by PhE without reducing the PhE-evoked [Ca2+]i increase. Conclusions: PDE4 is present in the pig and human bladder neck smooth muscle, where rolipram exerts a much more potent relaxation than that elicited by PDE5 inhibitors. In pig, rolipram-induced response is produced through the PKA pathway involving BKCa and IKCa channel activation and [Ca2+]i desensitization-dependent mechanisms, this relaxation also being due to neuronal NO and H2S release.
  • Item
    Role of neuronal voltage‐gated K+ channels in the modulation of the nitrergic neurotransmission of the pig urinary bladder neck
    (British Journal of Pharmacology, 2008) Hernández Martín, Marina; Barahona Gomáriz, María Victoria; Recio Visedo, María Paz; Navarro Dorado, Jorge; Bustamante Alarma, Salvador; Benedito Castellote, Sara; García Sacristán, Albino; Prieto Ocejo, Dolores; Orensanz Muñoz, Luis Miguel
    Background and purpose: As nitric oxide (NO) plays an essential role in the inhibitory neurotransmission of the bladder neck of several species, the current study investigates the mechanisms underlying the NO‐induced relaxations in the pig urinary bladder neck. Experimental approach:Urothelium‐denuded bladder neck strips were dissected and mounted in isolated organ baths containing a physiological saline solution at 37 °C and continuously gassed with 5% CO2and 95% O2, for isometric force recording. The relaxations to transmural nerve stimulation (EFS), or to exogenously applied acidified NaNO solution were carried out on strips pre‐contracted with phenylephrine, and treated with guanethidine and atropine, to block noradrenergic neurotransmission and muscarinic receptors, respectively. Key results:EFS (0.2–1 Hz) and addition of acidified NaNO solution (1 μM–1 mM) evoked frequency‐ and concentration‐dependent relaxations, respectively. These responses were potently reduced by the blockade of guanylate cyclase and were not modified by the K+ channel blockers iberiotoxin, charybdotoxin, apamin or glibenclamide. The voltage‐gated K+ (Kv) channels inhibitor 4‐aminopyridine, greatly enhanced the nitrergic relaxations evoked by EFS, but did not affect the NaNO2 solution‐induced relaxations. Conclusions and implications:NO, whose release is modulated by pre‐junctional Kv channels, relaxes the pig urinary bladder neck through a mechanism dependent on the activation of guanylate cyclase, in which post‐junctional K+ channels do not seem to be involved. Modulation of Kv channels could be useful in the therapy of the urinary incontinence produced by intrinsic sphincteric deficiency.
  • Item
    Project number: 292
    Implementación del aprendizaje basado en problemas (ABP) en la enseñanza práctica de la fisiología del sistema digestivo
    (2019) López-Oliva Muñoz, María Elvira; Sánchez Pina, Ana Alejandra; Hernández Rodríguez, Medardo Vicente; Prieto Ocejo, Dolores; García Sacristán, Albino; Contreras Jiménez, Cristina; Martínez Gómez, Ana Cristina; Agis Torres, Angel; Climent Florez, Belén; Rivera de los Arcos, Luis; Recio Visedo, María Paz; Benedito Castellote, Sara; Muñoz Picos, Mercedes; Raposo González, Rafaela
  • Item
    Role of Calcitonin Gene-Related Peptide in Inhibitory Neurotransmission to the Pig Bladder Neck
    (2011) Martínez-Sáenz, Ana ; Recio Visedo, María Paz; Orensanz, Luis M. ; Leite Fernandes, Vitor Samuel; Martínez Sainz, María Del Pilar; Bustamante, Salvador ; Carballido, Joaquín ; García-Sacristán, Albino ; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    Purpose: We studied the role of calcitonin gene-related peptide in nonadrenergic, noncholinergic neurotransmission to the pig bladder neck. Materials and Methods: We used immunohistochemical techniques to determine the distribution of calcitonin gene-related peptide immunoreactive fibers as well as organ baths for isometric force recording. We investigated relaxation due to endogenously released or exogenously applied calcitonin gene-related peptide in urothelium denuded phenylephrine precontracted strips treated with guanethidine, atropine and NG-nitro-L-arginine to block noradrenergic neurotransmission, muscarinic receptors and nitric oxide synthase, respectively. Results: Rich calcitonin gene-related peptide immunoreactive innervation was found penetrating through the adventitia and distributed in the suburothelial and muscle layers. Numerous, variable size, varicose calcitonin gene-related peptide immunopositive terminals were seen close below the urothelium. In the muscle layer calcitonin gene-related peptide immunopositive nerves usually appeared as varicose terminals running along muscle fibers. Electrical field stimulation (2 to 16 Hz) and exogenous calcitonin gene-related peptide (0.1 nM to 0.3 μM) evoked frequency and concentration dependent relaxation, respectively. Nerve responses were potentiated by capsaicin, decreased by calcitonin gene-related peptide (8–37) and abolished by tetrodotoxin, capsaicin sensitive primary afferent blockers, calcitonin gene-related peptide receptors and neuronal voltage gated Na+ channels. Calcitonin gene-related peptide-induced relaxation was potentiated by the neuronal voltage gated Ca2+ channels blocker ω-conotoxin-GVIA and decreased by calcitonin gene-related peptide (8–37). Calcitonin gene-related peptide relaxation was not modified by blockade of endopeptidases, nitric oxide synthase, guanylyl cyclase and cyclooxygenase. Conclusions: Results suggest that calcitonin gene-related peptide is involved in the nonadrenergic, noncholinergic inhibitory neurotransmission of the pig bladder neck, producing relaxation through neuronal and muscle calcitonin gene-related peptide receptors. Nitric oxide/cyclic guanosine monophosphate and cyclooxygenase pathways do not seem to be involved in such responses.
  • Item
    COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats
    (Free Radical Biology and Medicine, 2015) Muñoz Picos, Mercedes; Sánchez Pina, Ana Alejandra; Martínez Sainz, María Del Pilar; Benedito Castellote, Sara; López-Oliva Muñoz, María Elvira; García Sacristán, Albino; Hernández Rodríguez, Medardo Vicente; Prieto Ocejo, Dolores
    Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine(ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZRandbluntedbyCOX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium-and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition.In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity.COX-2 activity is in turn upregulated by ROS.
  • Item
    Mechanisms involved in the nitric oxide-induced vasorelaxation in porcine prostatic small arteries
    (Naunyn Schmiedebergs Arch Pharmacol, 2011) Fernandes, Vítor S.; Martínez Sáenz, Ana; Recio Visedo, María Paz; Fernandes Ribeiro, Ana Sofía; Ana Sánchez; Martínez Sainz, María Del Pilar; Martínez Gómez, Ana Cristina; García Sacristán, Albino; Orensanz Muñoz, Luis Miguel; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    Benign prostatic hypertrophy has been known to be related with glandular ischemia processes, and nitric oxide (NO) is a potent vasodilator agent. Therefore, the current study investigates the mechanisms underlying the NO-induced vasorelaxation in pig prostatic small arteries. In microvascular myographs, relaxation to electrical field stimulation (EFS), or to exogenous (S)-nitroso-N-acetylpenicillamine (SNAP) and acetylcholine (ACh), was observed on noradrenaline-precontracted prostatic small arterial rings under non-adrenergic and non-cholinergic (NANC) conditions. EFS (1-16 Hz) and exogenous SNAP (0.1-30 μM) evoked frequency- and concentration-dependent relaxation, respectively. Tetrodotoxin, a neuronal voltage-gated Na(+) channel blocker, abolished the EFS-evoked relaxation. ACh (1 nM-10 μM) induced concentration-dependent relaxation, which was reduced by the NO synthase inhibitor N(G)-nitro-L: -arginine (L: -NOARG). L: -NOARG also reduced the EFS-elicited relaxation but failed to modify the response to SNAP. 1H-[1,2,4]-oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and iberiotoxin (IbTX), blockers of soluble guanylyl cyclase and large conductance Ca(2+)-activated K(+) (BK(Ca)) channels, respectively, reduced EFS-, SNAP-, and ACh-induced relaxation. The combination of ODQ with IbTX did not produce further inhibition of the responses to either SNAP or ACh, compared with ODQ alone. Blockade of cyclooxygenases and intermediate and small conductance Ca(2+)-activated, ATP-dependent, and voltage-gated K(+) channels did not change the EFS and SNAP responses. In conclusion, our results suggest that NO and non-NO non-prostanoid factor(s) derived from NANC nerves are involved in the vasodilatation of pig prostatic small arteries. NO produces relaxation through soluble guanylyl cyclase activation-dependent BK(Ca) channel opening and through guanylyl cyclase-independent mechanisms. The vasodilatation elicited by NO could be useful to prevent prostatic ischemia.
  • Item
    Hydrogen peroxide activates store-operated Ca2+ entry in coronary arteries
    (British Journal of Pharmacology, 2015) Santiago Prieto, María Elvira; Climent Flórez, Belén; Muñoz Picos, Mercedes; García Sacristán, Albino; Rivera De Los Arcos, Luis; Prieto Ocejo, Dolores
    BACKGROUND AND PURPOSE Abnormal Ca2+ metabolism has been involved in the pathogenesis of vascular dysfunction associated with oxidative stress. Here, we have investigated the actions of H2O2 on store-operated Ca2+ (SOC) entry in coronary arteries and assessed whether it is impaired in arteries from a rat model of metabolic syndrome. EXPERIMENTAL APPROACH Simultaneous measurements of intracellular Ca2+ concentration and contractile responses were made in coronary arteries from Wistar and obese Zucker rats, mounted in microvascular myographs, and the effects of H2O2 were assessed. KEY RESULTS H2O2 raised intracellular Ca2+ concentrations, accompanied by simultaneous vasoconstriction that was markedly reduced in a Ca2+-free medium. Upon Ca2+ re-addition, a nifedipine-resistant sustained Ca2+ entry, not coupled to contraction, was obtained in endothelium-denuded coronary arteries. The effect of H2O2 on this voltage-independent Ca2+ influx was concentration dependent, and high micromolar H2O2 concentrations were inhibitory and reduced SOC entry evoked by inhibition of the sarcoplasmic reticulum ATPase (SERCA). H2O2-induced increases in Fura signals were mimicked by Ba2+ and reduced by heparin, Gd3+ ions and by Pyr6, a selective inhibitor of the Orai1-mediated Ca2+ entry. In coronary arteries from obese Zucker rats, intracellular Ca2+ mobilization and SOC entry activated by acute exposure to H2O2 were augmented and associated with local oxidative stress. CONCLUSION AND IMPLICATIONS H2O2 exerted dual concentration-dependent stimulatory/inhibitory effects on store-operated, IP3 receptor-mediated and Orai1-mediated Ca2+ entry, not coupled to vasoconstriction in coronary vascular smooth muscle. SOC entry activated by H2O2 was enhanced and associated with vascular oxidative stress in coronary arteries in metabolic syndrome.
  • Item
    Noradrenergic vasoconstriction of pig prostatic small arteries
    (Naunyn-Schmiedeberg’s Arch Pharmacol, 2008) Recio Visedo, María Paz; Orensanz Muñoz, Luis Miguel; Martínez Sainz, María Del Pilar; Navarro Dorado, Jorge; Bustamante Alarma, Salvador; García Sacristán, Albino; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    The current study investigated the distribution of adrenergic nerves and the action induced by noradrenaline (NA) in pig prostatic small arteries. Noradrenergic innervation was visualized using an antibody against dopamine-beta-hydroxylase (DBH), and the NA effect was studied in small arterial rings mounted in microvascular myographs for isometric force recordings. DBH-immunoreactive nerve fibers were located at the adventitia and the adventitia-media border of the vascular wall. Electrical field stimulation (EFS, 1-32 Hz) evoked frequency-dependent contractions that were reduced by guanethidine and prazosin (adrenergic neurotransmission and α1-adrenoceptors blockers, respectively) and by the α2-adrenoceptor agonist UK 14,304. The α2-adrenoceptor antagonist rauwolscine reversed the UK 14,304-produced inhibition. NA produced endothelium-independent contractions that were antagonized with low estimated affinities and Schild slopes different from unity by prazosin and the α1A-adrenoceptor antagonist N-[2-(2-cyclopropylmethoxyphenoxy) ethyl]-5-chloro-α-α-dimethyl-1H-indole-3-ethanamine (RS 17053). The α1A-adrenoceptor antagonist 5-methyl-3-[3-[4-[2-(2,2,2,-trifluoroethoxy) phenyl]-1-piperazinyl]propyl]-2,4-(1H)-pyrimidinedione (RS 100329), which also displays high affinity for α1L-adrenoceptors, and the α1L-adrenoceptor antagonist tamsulosin, which also has high affinity for α1A- and α1D-adrenoceptors, induced rightward shifts with high affinity of the contraction-response curve to NA. The α1D-adrenoceptor antagonist 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl]8-azaspiro[4,5]decane-7,9-dione dihydrochloride (BMY 7378) failed to modify the NA contractions that were inhibited by extracellular Ca2+ removal and by voltage-activated (L-type) Ca2+ channel blockade. These data suggest that pig prostatic resistance arteries have a rich noradrenergic innervation; and NA, whose release is modulated by prejunctional α2-adrenoceptors, evokes contraction mainly through activation of muscle α1L-adrenoceptors coupled to extracellular Ca2+ entry via voltage (L-type)- and non-voltage-activated Ca2+ channels.
  • Item
    Neuronal and non-neuronal bradykinin receptors are involved in the contraction and/or relaxation to the pig bladder neck smooth muscle
    (Neurourology and urodynamics, 2013) Ribeiro, Ana Sofía Fernandes; Leite Fernandes, Vitor Samuel; Martínez Sainz, María Del Pilar; Martínez-Sáenz, Ana; Pazos Rodríguez, María Ruth; Orensanz Muñoz, Luis Miguel; Recio Visedo, María Paz; Bustamante Alarma, Salvador; Carballido Rodríguez, Joaquín; García Sacristán, Albino; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    Aims: The current study investigates the role played by bradykinin (BK) receptors in the contractility to the pig bladder neck smooth muscle. Methods: Bladder neck strips were mounted in myographs for isometric force recordings and BK receptors expression was also determined by immunohistochemistry. Results: B2 receptor expression was observed in the muscular layer and urothelium whereas B1 expression was consistent detected in urothelium. A strong B2 immunoreactivity was also observed within nerve fibers among smooth muscle bundles. On urothelium-denuded preparations basal tone, BK induced concentration-dependent contractions which were reduced in urothelium-intact samples, by extracellular Ca(2+) removal and by blockade of B2 receptors and voltage-gated Ca(2+) (VOC) and non-VOC channels, and increased by cyclooxygenase (COX) inhibition. On phenylephrine-precontracted denuded strips, under non-adrenergic non-cholinergic (NANC) conditions, electrical field stimulation-elicited frequency-dependent relaxations which were reduced by B2 receptor blockade. In urothelium-intact samples, the B1 receptor agonist kallidin promoted concentration-dependent relaxations which were reduced by blockade of B1 receptors, COX, COX-1 and large-conductance Ca(2+) -activated K(+) (BKCa ) channels and abolished in urothelium-denuded samples and in K(+) -enriched physiological saline solution-precontracted strips. Conclusions: These results suggest that BK produces contraction of pig bladder neck via smooth muscle B2 receptors coupled to extracellular Ca(2+) entry via VOC and non-VOC channels with a minor role for intracellular Ca(2+) mobilization. Facilitatory neuronal B2 receptors modulating NANC inhibitory neurotransmission and urothelial B1 receptors producing relaxation via the COX-1 pathway and BKCa channel opening are also demonstrated.
  • Item
    Project number: 407
    Autoevaluación, Coevaluación y el uso de las TIC como enfoque innovador en las prácticas de Fisiopatología y su efecto en el proceso de enseñanza-aprendizaje del alumno
    (2023) Leite Fernandes, Vitor Samuel; Agis Torres, Ángel; Benedito Castellote, Sara; Climent Flórez, Belén; Contreras Jiménez, Cristina; García Sacristán, Albino; Gómez del Val, Alfonso; Hernández Rodríguez, Medardo Vicente; Hernández Martín, Marina; López-Oliva Muñoz, María Elvira; Merino Martín, José Joaquín; Montenegro Álvarez De Tejera, María Pilar; Muñoz Picos, Mercedes; Navarro Dorado, Jorge; Pascual Gómez, Natalia Fernanda; Perales Calvo, Manuel; Prieto Ocejo, Dolores; Puente Maya, Francisco Jesus; Raposo González, Rafaela; Recio Visedo, María Paz; Rivera De Los Arcos, Luis; Sánchez Pina, Ana Alejandra
    En las últimas décadas, la educación universitaria ha evolucionado hacia un enfoque constructivista en consonancia con las recomendaciones del Espacio Europeo de Educación Superior (EEES). En este paradigma, los estudiantes asumen un papel activo en el proceso de enseñanza-aprendizaje, mientras los profesores actúan como facilitadores. Las metodologías constructivistas fomentan el desarrollo tanto individual como grupal de competencias específicas y genéricas, al tiempo que permiten la inclusión de agentes de evaluación formativa para estimular la crítica y la autocrítica del alumno en su desempeño. En este contexto, surge la necesidad de aplicar el constructivismo a la evaluación, involucrando al estudiante en su propio proceso de evaluación. La autoevaluación y la coevaluación emergen como alternativas concretas para lograrlo. La autoevaluación implica que el estudiante analice y valore de manera sistemática su trabajo durante el proceso de aprendizaje para mejorar resultados y fomentar la autocrítica. Por otro lado, la coevaluación es una evaluación entre compañeros que permite valorar la implicación y actitud de los miembros del grupo, estimulando el aprendizaje colectivo. Las Tecnologías de la Información y Comunicación (TIC) juegan un papel importante en la educación y en la evaluación de los alumnos, diferenciándose de las prácticas tradicionales. La implementación de TIC no solo desarrolla habilidades en el proceso enseñanza-aprendizaje, sino también favorece la autoevaluación y la coevaluación. Con base en este enfoque, se presenta un proyecto de innovación docente en la asignatura de Fisiopatología para estudiantes de Farmacia. Los alumnos crearán videos sobre temas específicos de la práctica y se evaluarán a sí mismos y a sus compañeros utilizando la herramienta App Plickers. Sin embargo, aún no existe una metodología claramente definida para la implementación de estrategias constructivistas y uso de TIC en Fisiopatología, destacando la importancia y relevancia de este proyecto.