Person:
Pingarrón Carrazón, José Manuel

Loading...
Profile Picture
First Name
José Manuel
Last Name
Pingarrón Carrazón
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Area
Química Analítica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 7 of 7
  • Item
    Multiplexed determination of human growth hormone and prolactin at a label free electrochemical immunosensor using dual carbon nanotube–screen printed electrodes modified with gold and PEDOT nanoparticles
    (Analyst, 2014) Serafín González-Carrato, Verónica; Martínez-García, Gonzalo; Agüí Chicharro, María Lourdes; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    A label-free dual electrochemical immunosensor was constructed for the multiplexed determination of human growth (hGH) and prolactin (PRL) hormones. The immunosensor used an electrochemical platform composed of carbon nanotube–screen printed carbon electrodes (CNT/SPCEs) modified with poly(ethylene-dioxythiophene) (PEDOT) and gold nanoparticles, on which the corresponding hGH and PRL antibodies were immobilized. The affinity reactions were monitored by measuring the decrease in the differential pulse voltammetric oxidation response of the redox probe dopamine. The experimental variables involved in the preparation of both AuNP/PEDOT/CNT/SPC modified electrodes and the dual immunosensor were optimized. The immunosensor exhibited an improved analytical performance for hGH and PRL with respect to other electrochemical immunosensor designs, showing wide ranges of linearity and low detection limits of 4.4 and 0.22 pg mL−1, respectively. An excellent selectivity against other hormones and in the presence of ascorbic and uric acids was found. The usefulness of the dual immunosensor for the simultaneous analysis of hGH and PRL was demonstrated by analyzing human serum and saliva samples spiked with the hormones at different concentration levels.
  • Item
    Enhanced determination of fertility hormones in saliva at disposable immunosensing platforms using a custom designed field-portable dual potentiostat
    (Sensors and Actuators B: Chemical, 2019) Serafín González-Carrato, Verónica; Arévalo Pérez, Beatriz; Martínez-García, Gonzalo; Aznar-Poveda, Juan; Lopez-Pastor, José Antonio; Beltrán-Sánchez, J. Francisco; Garcia-Sanchez Antonio, Javier; Garcia-Haro, Juan; Campuzano Ruiz, Susana; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    This work describes a new electroanalytical device for the simultaneous and reliable determination of two fertility relevant hormones (luteinizing hormone, LH, and progesterone, P4) in saliva. The device is constructed using a custom designed and field-portable potentiostat where dual disposable immunosensing platform are connected. The immunosensors are based on sandwich-type and competitive immunoassays implemented onto magnetic microbeads (MBs) functionalized with Neutravidin and Protein G for the determination of LH and P4, respectively. Amperometric detection performed at −0.20 V vs the Ag pseudo-reference electrode using the H2O2/hydroquinone (HQ) system was employed as the transduction technique after placing the MBs with immunocomplexes for each target hormone on the appropriate working electrode of screen-printed dual carbon electrodes (SPdCEs). The method exhibits high sensitivity and selectivity for the target hormones providing detection limits of 1.7 pg mL−1 and 0.10 mIU mL−1 for P4 and LH, respectively, with a 1 h test time. The applicability of the method was confirmed by determining both hormones in saliva samples from different volunteers providing results comparable to those obtained using amperometric transduction with a commercial potentiostat and with ELISA methodologies involving the same immunoreagents for each target hormone.
  • Item
    Simultaneous amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 by using grafted screen-printed electrodes and a composite prepared from quantum dots and carbon nanotubes for signal amplification
    (Microchimica Acta, 2019) Serafín González-Carrato, Verónica; Valverde De La Fuente, Alejandro; Garranzo-Asensio, María; Barderas, Rodrigo; Campuzano Ruiz, Susana; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    This paper describes a dual electrochemical immunoassay for the simultaneous determination of IL-13Rα2 and CDH-17, two biomarkers of emerging relevance in metastatic processes. The sandwich assay uses a screen-printed dual carbon electrode that was electrochemically grafted with p-aminobenzoic acid to allow the covalent immobilization of capture antibodies. A hybrid composed of graphene quantum dots (GQDs) and multiwalled carbon nanotubes (MWCNTs) act as nanocarriers for the detection antibodies and horseradish peroxidase. The use of this hybrid material considerably improves the assay (in comparison to the use of MWCNTs) due to the peroxidase mimicking activity of the GQDs. The method works at a low working potential (0.20 V vs. Ag pseudo-reference electrode) and thus is not readily interfered by unknown electroactive species. The dual immunoassay allows for the selective determination of both biomarkers with LOD values of 1.4 (IL-13sRα2) and 0.03 ng mL-1 (CDH-17). The simultaneous determination of IL-13Rα2 and CDH-17 was accomplished in lysates from breast and colorectal cancer cells with different metastatic potential, and in paraffin-embedded tumor tissues extracts from patients diagnosed with colorectal cancer at different stages. The applicability to discriminate the metastatic potential even in intact cells through the detection of both extracellular receptors has been demonstrated also. The assay can be performed within 3 h, requires small sample amounts (0.5 μg), and has a simple protocol. Graphical abstract Dual amperometric immunosensing of the metastasis-related biomarkers IL-13Rα2 and CDH-17 in human colorectal cancer cells and tissues by using grafted screen-printed electrodes and composites of quantum dots and carbon nanotubes as nanocarriers.
  • Item
    Electrochemical immunosensor for receptor tyrosine kinase AXL using poly(pyrrolepropionic acid)-modified disposable electrodes
    (Sensors and Actuators B: Chemical, 2016) Serafín González-Carrato, Verónica; Torrente Rodríguez, Rebeca Magnolia; Batlle, Montserrat; García de Frutos, Pablo; Campuzano Ruiz, Susana; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    A sensitive and rapid method for the determination of the clinically relevant biomarker receptor tyrosine kinase AXL in serum involving amperometric disposable immunosensors is reported. The target protein was sandwiched between a specific capture antibody covalently immobilized on screen-printed carbon electrodes modified with electropolymerized poly(pyrrolepropionic acid) and a biotinylated detector antibody labeled with a streptavidin-horseradish peroxidase conjugate. The amperometric responses were measured at −0.20 V vs the Ag pseudo-reference electrode of the SPCE upon the addition of H2O2 in the presence of hydroquinone (HQ) as mediator. This integrated immunosensing platform showed a low limit of detection (337 pg mL−1), a good selectivity against other non-target serum proteins, and provided results statistically in agreement with those obtained by using a commercial ELISA kit. These attractive features together with the simplicity and easy automation and miniaturization of the required instrumentation make the developed methodology a promising alternative in the development of devices for on-site clinical analysis.
  • Item
    Graphene quantum dots-functionalized multi-walled carbon nanotubes as nanocarriers in electrochemical immunosensing. Determination of IL-13 receptor α2 in colorectal cells and tumor tissues with different metastatic potential
    (Sensors and Actuators B: Chemical, 2019) Serafín González-Carrato, Verónica; Valverde De La Fuente, Alejandro; Martínez-García, Gonzalo; Martínez-Periñán, Emiliano; Comba, Fausto; Garranzo-Asensio, María; Barderas, Rodrigo; Yáñez-Sedeño Orive, Paloma; Campuzano Ruiz, Susana; Pingarrón Carrazón, José Manuel
    In this work, the development of the first integrated electrochemical immunosensor for the determination of the IL-13Rα2 is reported. The strategy involves the immobilization of a biotinylated capture antibody onto streptavidin-modified screen-printed electrodes through grafting with p-aminobezoic acid (p-ABA) and further activation using EDC/Sulfo-NHS chemistry. A hybrid nanomaterial composed of multiwalled carbon nanotubes (MWCNTs) and Graphene Quantum Dots (GQDs) was used as nanocarrier of multiple detector antibody and HRP molecules. Amperometric detection with the system H2O2/hydroquinone (HQ) achieved a linear calibration plot ranging from 2.7 to 100 ng mL−1 IL-13sRα2, with a LOD value of 0.8 ng mL−1. The immunosensor showed an excellent selectivity and was successfully applied to the determination of the target receptor directly in small amounts of raw cellular lysates and extracts of paraffin-embedded tissues from patients diagnosed with colorectal cancer at different stages.
  • Item
    Electrochemical immunosensor for the determination of insulin-like growth factor-1 using electrodes modified with carbon nanotubes–poly(pyrrole propionic acid) hybrids
    (Biosensors & Bioelectronics, 2013) Serafín González-Carrato, Verónica; Agüí Chicharro, María Lourdes; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    An amperometric immunosensor for the determination of the hormone insulin-like growth factor 1 (IGF1) is reported for the first time in this work. As electrochemical transducer, a multiwalled carbon nanotubes-modified glassy carbon electrode on which poly(pyrrole propionic acid) was electropolymerized was prepared. This approach provided a high content of surface confined carboxyl groups suitable for direct covalent binding of anti-IGF1 monoclonal antibody. A sandwich-type immunoassay using a polyclonal antibody labeled with peroxidase, hydrogen peroxide as the enzyme substrate and catechol as redox mediator was employed to monitor the affinity reaction. All the variables involved in the preparation of the modified electrode were optimized and the electrodes were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Moreover, the different experimental variables affecting the amperometric response of the immunosensor were also optimized. The calibration graph for IGF1 showed a range of linearity extending from 0.5 to 1000 pg/mL, with a detection limit, 0.25 pg/mL, more than 100 times lower than the lowest values reported for the ELISA immunoassays available for IGF1 (30 pg/mL, approximately). Excellent reproducibility for the measurements carried out with different immunosensors and selectivity against other hormones were also evidenced. A commercial human serum spiked with IGF1 at different levels between 0.01 and 10.0 ng/mL was analyzed with good results.
  • Item
    Comparative evaluation of the performance of electrochemical immunosensors using magnetic microparticles and nanoparticles. Application to the determination of tyrosine kinase receptor AXL
    (Microchimica Acta, 2017) Serafín González-Carrato, Verónica; Torrente Rodríguez, Rebeca Magnolia; Batlle, Montserrat; García de Frutos, Pablo; Campuzano Ruiz, Susana; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    Electrochemical sandwich immunoassay strategies involving the use of carboxyl-functionalized magnetic microbeads (cMBs) and magnetic nanoparticles (cMNPs) have been evaluated and compared. The proteolytically cleaved soluble Tyrosine kinase receptor sAXL was used as the target analyte. Antibodies against AXL were covalently immobilized on cMBs or cMNPs. Immunobinding of AXL was detected by means of a secondary biotinylated antibody and a streptavidinhorseradish peroxidase conjugate. The electrochemical transduction was accomplished by capturing the cMBs or cMNPs bearing the immunoconjugates onto screen-printed carbon electrodes (SPCEs) by using a small magnet. The amperometric response was measured at −0.20 V (vs the silver pseudoreference electrode of the SPCE) upon the addition of H2O2 in the presence of hydroquinone as the redox mediator. The calibration plots for AXL extended up to 7.5 ng mL−1 when cMBs were used for the preparation of the immunosensor and up to 40 ng mL−1 in the case of using cMNPs. The respective slope values were 158 (cMBs) and 43 nA mL ng−1 (cMNPs), while the achieved LODs were 74 (cMBs) and 75 pg mL−1 (cMNPs). Although the immunosensors prepared with cMBs provided a shorter range of linearity, they exhibited a 3.7-times larger sensitivity than those constructed with cMNPs. The successful application of the new strategies was demonstrated for the determination of the endogenous content of sAXL in real human serum samples (a cut-off value of 71 ng mL−1 have been established for patients with risk of heart failure). The immunosensors constructed using cMBs or cMNPs can be advanta geously compared, in terms of sensitivity and fabrication time, with the only immunosensor for AXL previously reported. In addition, these new immunosensors took approximately half time than ELISA to perform the assay.