Person:
Triviño Casado, Alberto

Loading...
Profile Picture
First Name
Alberto
Last Name
Triviño Casado
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Medicina
Department
Inmunología, Oftalmología y ORL
Area
Oftalmología
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 5 of 5
  • Item
    The Impact of the Eye in Dementia: The Eye and its Role in Diagnosis and Follow‐up
    (Update on Dementia, 2016) García Martín, Elena Salobrar; Ramírez Sebastián, Ana Isabel; Hoz Montañana, Rosa de; Rojas, Pilar; Salazar Corral, Juan José; Rojas López, Blanca; Yubero Pancorbo, Raquel; Gil, Pedro; Triviño Casado, Alberto; Ramirez Sebastian, Jose Manuel; Moretti, David
    Over the last few decades, the importance of ophthalmic examination in neurodegenerative diseases of the CNS has reportedly increased. The retina is an extension of the CNS and thus should not be surprising to find abnormal results in both the test exploring visual processing and those examining the retina of patients with CNS degeneration. Current in vivo imaging techniques are allowing ophthalmologists to detect and quantify data consistent with the histopathological findings described in the retinas of Alzheimer’s disease (AD) patients and may help to reveal unsuspected retinal and optic‐nerve repercussions of other CNS diseases. In this chapter, we perform an analysis of the physiological changes in ocular and cerebral ageing. We analyse the ocular manifestations in CNS disorders such as stroke, AD and Parkinson’s disease. In addition, the pathophysiology of both the eye and the visual pathway in AD are described. The value of the visual psychophysical tests in AD diagnosis is reviewed as well as the main findings of the optical coherence tomography as a contribution to the diagnosis and monitoring of the disease. Finally, we examine the association of two neurodegenerative diseases, AD and glaucoma, as mere coincidence or possible role in the progression of the neurodegeneration.
  • Item
    Macular Thickness as a Potential Biomarker of Mild Alzheimer's Disease
    (Ophthalmology, 2014) García Martín, Elena Salobrar; Rojas López, Blanca; Ramírez Sebastián, Ana Isabel; Hoz Montañana, Rosa de; Salazar Corral, Juan José; Yubero Pancorbo, Raquel; Gil, Pedro; Triviño Casado, Alberto; Ramirez Sebastian, Jose Manuel
    Although several postmortem findings in the retina of patients with Alzheimer's disease (AD) are available, new biomarkers for early diagnosis and follow-up of AD are still lacking. It has been postulated that the defects in the retinal nerve fiber layer (RNFL) may be the earliest sign of AD, even before damage to the hippocampal region that affects memory. This fact may reflect retinal neuronal-ganglion cell death and axonal loss in the optic nerve in addition to aging.
  • Item
    Analysis of Retinal Peripapillary Segmentation in Early Alzheimer’s Disease Patients
    (BioMed Research International, 2015) García Martín, Elena Salobrar; Hoyas, Irene; Leal, Mercedes; Hoz Montañana, María Rosa De; Rojas López, María Blanca; Ramírez Sebastián, Ana Isabel; Salazar Corral, Juan José; Yubero Pancorbo, Raquel; Gil Gregorio, Pedro; Triviño Casado, Alberto; Ramírez Sebastián, José Manuel
    Decreased thickness of the retinal nerve fiber layer (RNFL) may reflect retinal neuronal-ganglion cell death. A decrease in the RNFL has been demonstrated in Alzheimer’s disease (AD) in addition to aging by optical coherence tomography (OCT). Twenty-three mild-AD patients and 28 age-matched control subjects with mean Mini-Mental State Examination 23.3 and 28.2, respectively, with no ocular disease or systemic disorders affecting vision, were considered for study. OCT peripapillary and macular segmentation thickness were examined in the right eye of each patient. Compared to controls, eyes of patients with mild-AD patients showed no statistical difference in peripapillary RNFL thickness (P>0.05); however, sectors 2, 3, 4, 8, 9, and 11 of the papilla showed thinning, while in sectors 1, 5, 6, 7, and 10 there was thickening. Total macular volume and RNFL thickness of the fovea in all four inner quadrants and in the outer temporal quadrants proved to be significantly decreased (P<0.01). Despite the fact that peripapillary RNFL thickness did not statistically differ in comparison to control eyes, the increase in peripapillary thickness in our mild-AD patients could correspond to an early neurodegeneration stage and may entail the existence of an inflammatory process that could lead to progressive peripapillary fiber damage.
  • Item
    Ophthalmologic Psychophysical Tests Support OCT Findings in Mild Alzheimer's Disease
    (Journal of Ophthalmology, 2015) García Martín, Elena Salobrar; Hoz Montañana, María Rosa de; Rojas López, María Blanca; Ramírez Sebastián, Ana Isabel; Salazar Corral, Juan José; Yubero Pancorbo, Raquel; Gil Gregorio, Pedro; Triviño Casado, Alberto; Ramirez Sebastian, Jose Manuel
    Purpose. To analyze in mild Alzheimer's disease (MAD) patients, GDS-4 (Reisberg Scale), whether or not some psychophysical tests (PTs) support OCT macular findings in the same group of MAD patients reported previously. Methods. Twenty-three MAD patients and 28 age-matched control subjects with mean Mini Mental State Examination of 23.3 and 28.2, respectively, with no ocular disease or systemic disorders affecting vision were included. Best-corrected visual acuity (VA), contrast sensitivity (CS) (3, 6, 12, and 18 cpds), color perception (CP), and perception digital test (PDT) were tested in one eye of each patient. Results. In comparison with the controls, MAD patients presented (i) a significant decrease in VA, PDT, and CS for all spatial frequencies analyzed, especially the higher ones, and (ii) a significant increase in unspecific errors on the blue axis (P < 0.05 in all instances). In MAD patients, a wide a ROC curve was plotted in all PTs. Conclusions. In MAD, CS, VA, and the tritan axis in CP were impaired. The PTs with the greatest predictive value are the higher spatial frequencies in CS and tritan unspecific errors in CP. PT abnormalities are consistent with the structural findings reported in the same MAD patients using OCT.
  • Item
    The Role of Microglia in Retinal Neurodegeneration: Alzheimer's Disease, Parkinson, and Glaucoma
    (Frontiers in Aging Neuroscience, 2017) Ramírez Sebastián, Ana Isabel; Hoz Montañana, María Rosa de; García Martín, Elena Salobrar; Salazar Corral, Juan José; Rojas López, Blanca; Ajoy, Daniel; López Cuenca, Inés; Rojas, Pilar; Triviño Casado, Alberto; Ramirez Sebastian, Jose Manuel
    Microglia, the immunocompetent cells of the central nervous system (CNS), act as neuropathology sensors and are neuroprotective under physiological conditions. Microglia react to injury and degeneration with immune-phenotypic and morphological changes, proliferation, migration, and inflammatory cytokine production. An uncontrolled microglial response secondary to sustained CNS damage can put neuronal survival at risk due to excessive inflammation. A neuroinflammatory response is considered among the etiological factors of the major aged-related neurodegenerative diseases of the CNS, and microglial cells are key players in these neurodegenerative lesions. The retina is an extension of the brain and therefore the inflammatory response in the brain can occur in the retina. The brain and retina are affected in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and glaucoma. AD is an age-related neurodegeneration of the CNS characterized by neuronal and synaptic loss in the cerebral cortex, resulting in cognitive deficit and dementia. The extracellular deposits of beta-amyloid (Aβ) and intraneuronal accumulations of hyperphosphorylated tau protein (pTau) are the hallmarks of this disease. These deposits are also found in the retina and optic nerve. PD is a neurodegenerative locomotor disorder with the progressive loss of dopaminergic neurons in the substantia nigra. This is accompanied by Lewy body inclusion composed of α-synuclein (α-syn) aggregates. PD also involves retinal dopaminergic cell degeneration. Glaucoma is a multifactorial neurodegenerative disease of the optic nerve, characterized by retinal ganglion cell loss. In this pathology, deposition of Aβ, synuclein, and pTau has also been detected in retina. These neurodegenerative diseases share a common pathogenic mechanism, the neuroinflammation, in which microglia play an important role. Microglial activation has been reported in AD, PD, and glaucoma in relation to protein aggregates and degenerated neurons. The activated microglia can release pro-inflammatory cytokines which can aggravate and propagate neuroinflammation, thereby degenerating neurons and impairing brain as well as retinal function. The aim of the present review is to describe the contribution in retina to microglial-mediated neuroinflammation in AD, PD, and glaucomatous neurodegeneration.