Person:
Suárez González, Pablo

Loading...
Profile Picture
First Name
Pablo
Last Name
Suárez González
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Geológicas
Department
Geodinámica, Estratigrafía y Paleontología
Area
Estratigrafía
Identifiers
UCM identifierORCIDScopus Author IDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 33
  • Item
    Calcareous algae (dasycladales and charophytes), essential for the sedimentological interpretation of ancient coastal-lakes systems. The Barremian-Aptian Leza Fm., Cameros Basin, N Spain
    (Third circular. Program : 29th IAS Meeting of Sedimentology. Sedimentology in the Heart of the Alps. Schlaming, September, 10-13 2012, 2012) Suárez González, Pablo; Martín Closas, C.; Quijada, Isabel Emma; Benito Moreno, María Isabel; Mas Mayoral, José Ramón
  • Item
    Do stromatolites Need Tides to trap Oodis? insights from the Coastal-Lake carbonates of the Leza FM (Early Cretaceous, N Spain)
    (Abstract book / Tidalites 2012: 8th International Conference on tidal environments, Caen, France, july 31- august 2, 2012) Suárez González, Pablo; Quijada, Isabel Emma; Benito Moreno, María Isabel; Mas Mayoral, José Ramón
  • Item
    Evolution of an intra-plate rift basin: the Latest Jurassic-Early Cretaceous Cameros Basin (Northwest Iberian Ranges, North Spain)
    (Geo-guías, Post-Meeting Field trips 28th IAS Meeting, Zaragoza, 2011) Mas Mayoral, José Ramón; Benito Moreno, María Isabel; Arribas Mocoroa, José; Alonso Millán, Ángela; Arribas Mocoroa, María Eugenia; Lohmann, K.C.; González Acebrón, Laura; Hernán, J.; Quijada, Isabel Emma; Suárez González, Pablo; Omodeo Salé, S.; Arenas, Concha; Pomar, Luis; Colombo, Ferrán
  • Item
    Textbook example of tectonically controlled carbonate sedimentation at the active margin of a rift basin: the Leza Fm (Early Cretaceous, Cameros Basin, Spain)
    (Abstracts / 28th IAS Meeting of Sedimentology, Zaragoza, Julio 5-8 2011, 2011) Suárez González, Pablo; Quijada, Isabel Emma; Benito Moreno, María Isabel; Mas Mayoral, José Ramón; Omodeo Salé, S.; Bádenas, Beatriz; Aurell, Marcos; Alonso-Zarza, Ana María
  • Item
    Revisiting the phosphorite deposit of Fontanarejo (central Spain): new window into the early Cambrian evolution of sponges and the microbial origin of phosphorites
    (Geological magazine, 2021) Reitner, Joachim; Luo, Cui; Suárez González, Pablo; Duda, Jan-Peter
    Fossils within early Cambrian phosphorites worldwide are often well preserved due to early diagenetic permineralization. Here, we examine the fossil record contained within phosphorites of the Lower Cambrian Pusa Formation (late Fortunian to Cambrian Stage 2) in Fontanarejo, central Spain. The sedimentology and age of these phosphorites have been controversial and are here reviewed and discussed, providing also an updated geological map. The Pusa Formation is composed of fine clastic sediments that are partly turbiditic, with channels of quartz-rich conglomerates and abundant phosphorites in the upper part of the succession. The microfacies and mineralogy of these channel deposits are studied here for the first time in detail, showing that they are mainly composed of subspherical apatite clasts, with minor mudstone intraclasts, quartzite and mica grains. Numerous sponge spicules, as well as entirely preserved hexactinellid sponges and demosponges, were collected within these phosphorites and likely represent stem groups. In addition to sponges, other fossils, such as small shelly fossils (SSF) of the mollusc Anabarella sp., were found. The phosphorites exhibit multiple evidence of intense microbial activity, including diverse fabrics (phosphatic oncoidal-like microbialites, thrombolites, stromatolites and cements) and abundant fossils of filamentous microbes that strongly resemble extant sulphur-oxidizing bacteria. Our findings strongly suggest that microbial processes mediated the rapid formation of most of the Fontanarejo apatite, probably accounting for the exceptional preservation of fragile fossils such as sponge skeletons. The apparent presence of taxonomically diverse hexactinellid and demosponge communities at the lowermost Cambrian further corroborates a Precambrian origin of the phylum Porifera.
  • Item
    Influencia del Keuper y de la estructuración tardivarisca en la arquitectura de las unidades sin-extensionales del borde norte de la Cuenca de Cameros
    (Geotemas, 2016) Suárez González, Pablo; Benito Moreno, María Isabel; Mas Mayoral, José Ramón; Quijada, Isabel Emma; Campos Soto, Sonia
    Este trabajo aporta nuevos datos cartográficos y sedimentológicos para aclarar la controvertida evolución tectónica extensional de la Cuenca de Cameros (N de España). La geometría actual del borde norte de la cuenca representa la continuación de lineaciones tardivariscas NO-SE y SO-NE reconocidas en la Cuenca Vasco-Cantábrica, a lo largo de las cuales se produjo una importante tectónica salina sin-extensional. En la zona de estudio, la distribución irregular de los depósitos plásticos del Keuper es interpretada aquí como debida a una movilización sin-extensional. De este modo, la estructuración tardivarisca del basamento y las movilizaciones de Keuper, asociadas a ella, permiten explicar la arquitectura y distribución de las unidades sin-extensionales del relleno de la cuenca.
  • Item
    Contrasting Modes of Carbonate Precipitation in a Hypersaline Microbial Mat and Their Influence on Biomarker Preservation (Kiritimati, Central Pacific)
    (Minerals, 2022) Shen, Yan; Suárez González, Pablo; Reitner, Joachim
    Microbial mats represented the earliest complex ecosystems on Earth, since fossil mineralized examples (i.e., microbialites) date back to the Archean Eon. Some microbialites contain putative remains of organic matter (OM), however the processes and pathways that lead to the preservation of OM within microbialite minerals are still poorly understood. Here, a multidisciplinary study is presented (including petrographic, mineralogical and organic geochemical analyses), focusing on a modern calcifying mat from a hypersaline lake in the Kiritimati atoll (Central Pacific). The results show that this mat has a complex history, with two main growth phases under hypersaline conditions, separated by an interruption caused by desiccation and/or freshening of the lake. The mineral precipitates of the mat are predominantly aragonitic and two contrasting precipitation modes are observed: the main growth phases of the mat were characterized by the slow formation of irregular micritic particles with micropeloidal textures and subspherical particles, linked to the degradation of the exopolymer (EPS) matrix of the mat; whereas the interruption period was characterized by the rapid development of a thin but laterally continuous crust composed of superposed fibrous aragonite botryoids that entombed their contemporaneous benthic microbial community. These two precipitation modes triggered different preservation pathways for the OM of the mat as the thin crust shows a particular lipid biomarker signature, different from that of other layers and the relatively rapid precipitation of the crust protecting the underlying lipids from degradation, causing them to show a preservation equivalent to that of a modern active microbial community, despite them being >1100 years old. Equivalent thin mineral crusts occur in other microbialite examples and, thus, this study highlights them as excellent targets for the search of well-preserved biomarker signatures in fossil microbialites. Nevertheless, the results of this work warn for extreme caution when interpreting complex microbialite biomarker signatures, advising combined petrographic, mineralogical and geochemical investigations for the different microbialite layers and mineral microfabrics.
  • Item
    Sedimentology of ancient coastal wetlands: insights from a cretaceous multifaceted depositional system
    (Journal of sedimentary research, 2015) Suárez González, Pablo; Quijada, Isabel Emma; Benito Moreno, María Isabel; Mas Mayoral, José Ramón
    Coastal wetlands are prominent modern environments widely studied in geomorphology and ecology, but the term ‘‘coastal wetland’’ is still barely used for the sedimentological classification of ancient deposits. The depositional system studied here (Leza Formation, Cameros Basin, Early Cretaceous, N Spain) includes diverse carbonate and clastic facies deposited at the sea–land transition, and is an illustrative example of the wide array of sedimentary environments that may occur in coastal wetlands systems. The studied system was composed mainly of carbonate water bodies whose salinity ranged from fresh to brackish and near-marine, and which had variable input of clastic material due to their lateral connection with alluvial fans. In addition, the system also included carbonate water bodies with stronger marine influence, tide-influenced oolitic areas, and relatively restricted evaporative settings. The deposits of all these environments occur alternating with each other throughout a unit 30–280 m thick, and they range from continental to marine conditions in a relatively small area (approximately 10 km 3 30 km). Thus, this sedimentological study of the Leza Fm provides an ideal opportunity to investigate challenging ancient deposits with both continental and marine features. Comparison with other modern and ancient coastal settings allows the conclusion that ‘‘coastal wetland’’ may be the most accurate sedimentological classification for the Leza Fm, since it was not part of a major coastal system (e.g., delta or estuary). A series of general sedimentological characteristics of coastal wetland deposits are gathered from the Cretaceous case study and from the modern and ancient examples examined. These characteristics include: predominance of shallow-water facies; common subaerial exposure and edaphic features; great variety of interrelated continental, transitional, and marine environments with contrasting hydrodynamic and hydrochemical conditions; and low-diversity biotic communities, including both continental and marine fossils, as well as fossils of ambiguous affinities.
  • Item
    Origin and significance of lamination in Lower Cretaceous stromatolites and proposal for a quantitative approach
    (Sedimentary geology, 2014) Suárez González, Pablo; Quijada, Isabel Emma; Benito Moreno, María Isabel; Mas Mayoral, José Ramón
    Stromatolite lamination is typically defined as alternation of dark and light laminae. Study of Lower Cretaceous stromatolites fromthe Leza Fm(N Spain) supports this statement, but recognises additional complexities in lamination that have implications for interpreting accretion processes. These stromatolites are partial analogues of present-day coarse-grained carbonate stromatolites in the Bahamas and Shark Bay (Australia) that mainly form by trapping and binding carbonate sand. The Leza examples contain both grain-rich and micrite-rich laminae with scarce particles, suggesting that they accreted both by trapping and not trapping grains. Lamination in modern and ancient coarse-grained stromatolites is commonly defined by thinmicritic crusts that formed during interruptions in accretion and separate contiguous grainy laminae (repetitive lamination). Leza examples also contain these thin hiatal crusts and locally showrepetitive lamination, but their conspicuous macroscopic lamination is defined by thicker alternating grain-rich and micrite-rich laminae (alternating lamination). This indicates that, although hiatuses in accretion occurred, change in accretion process was the main cause of macroscopic lamination. These differences in accretion processes and lamination styles between Leza examples and modern coarse-grained stromatolites may reflect differences in their environmental settings. Modern examples occur in shallow marine tidal environments, whereas Leza Fm coarse-grained stromatolites developed in ideinfluencedwater-bodies in coastal-wetlands that experienced fluctuations inwater salinity and hydrochemistry. Analysis of lamina-thickness in these Cretaceous stromatolites and similar published examples provides a quantitative approach to the processes that underlie stromatolite lamination.
  • Item
    Nuevas aportaciones sobre la influencia marina y la edad de los carbonatos de la Fm Leza en el sector de Préjano (SE de La Rioja). Cretácico Inferior, Cuenca de Cameros
    (Geogaceta, 2010) Suárez González, Pablo; Quijada, Isabel Emma; Mas Mayoral, José Ramón; Benito Moreno, María Isabel
    The Cameros Basin is a rift basin whose sedimentary infill is essentially continental with some episodes of marine influence. The Leza Fm carbonates (Enciso Gr, Barremian-Aptian) correspond to one of these episodes and their depositional environment has been described as lacustrine with occasional marine incursions. A detailed facies analysis of these carbonates in the Préjano area has led to the conclusion that the depositional environment of the Leza Fm in this area is in fact a system of coastal-lakes filled with brackish water as shown by the abundance of marine microfossils (Dasycladales algae and foraminifera) coexisting with continental microfossils (charophytes). The age of the Dasycladales found in the studied area is Barremian-Albian and thus it confirms the Barremian-Aptian age proposed for the Leza Fm and the Enciso Gr.