Person:
Zamorano Calvo, Jaime

Loading...
Profile Picture
First Name
Jaime
Last Name
Zamorano Calvo
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Astronomía y Astrofísica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 26
  • Item
    On the nature of the extragalactic number counts in the K-band
    (Astronomy & Astrophysics, 2009) Barro, G.; Gallego Maestro, Jesús; Pérez González, Pablo Guillermo; Eliche Moral, María del Carmen; Balcells, M.; Villar, V.; Cardiel López, Nicolás; Cristobal Hornillos, D.; Gil de Paz, Armando; Guzmán, R.; Pello, R.; Prieto, M.; Zamorano Calvo, Jaime
    Context. The galaxy number counts has been traditionally used to test models of galaxy evolution. However, the origin of significant differences in the shape of number counts at different wavelengths is still unclear. By relating the most remarkable features in the number counts with the underlying galaxy population it is possible to introduce further constraints on galaxy evolution. Aims. We aim to investigate the causes of the different shape of the K-band number counts when compared to other bands, analyzing in detail the presence of a change in the slope around K similar to 17.5. Methods. We present a near-infrared imaging survey, conducted at the 3.5 m telescope of the Calar Alto Spanish-German Astronomical Center (CAHA), covering two separated fields centered on the HFDN and the Groth field, with a total combined area of similar to 0.27 deg(2) to a depth of K similar to 19 (3 sigma, Vega). By combining our data with public deep K-band images in the CDFS (GOODS/ISAAC) and high quality imaging in multiple bands, we extract K-selected catalogs characterized with highly reliable photometric redshift estimates. We derive redshift binned number counts, comparing the results in our three fields to sample the effects of cosmic variance. We derive luminosity functions from the observed K-band in the redshift range [0.25-1.25], that are combined with data from the references in multiple bands and redshifts, to build up the K-band number count distribution. Results. The overall shape of the number counts can be grouped into three regimes: the classic Euclidean slope regime (d log N/dm similar to 0.6) at bright magnitudes; a transition regime at intermediate magnitudes, dominated by M* galaxies at the redshift that maximizes the product phi*dVc/d Omega; and an alpha dominated regime at faint magnitudes, where the slope asymptotically approaches -0.4(alpha + 1) controlled by post-M* galaxies. The slope of the K-band number counts presents an averaged decrement of similar to 50% in the range 15.5 < K < 18.5 (d log N/dm similar to 0.6-0.30). The rate of change in the slope is highly sensitive to cosmic variance effects. The decreasing trend is the consequence of a prominent decrease of the characteristic density phi(K,obs)* (similar to 60% from z = 0.5 to z = 1.5) and an almost flat evolution of M(K,obs)* (1 sigma compatible with M(K,obs)* = -22.89 +/- 0.25 in the same redshift range).
  • Item
    Deconstructing the K-band number counts
    (Highlights of Spanich Astrophysics, 2010) Barro, Guillermo; Gallego Maestro, Jesús; Pérez González, Pablo Guillermo; Eliche Moral, María del Carmen; Balcells, M.; Villar, V.; Cardiel López, Nicolás; Cristobal Hornillos, D.; Gil de Paz, Armando; Guzmán, R.; Pelló, R.; Prieto, M.; Zamorano Calvo, Jaime
    We present a study that links the NCs to the rest-frame luminosity functions (LFs) at the passbands probed by the observed K-band at different epochs. Making use of a large K-band selected sample in the Groth Field, HDFN and CDFS (∼0.27deg^(2)), we have derived highly reliable photometric redshift estimates that allow us to estimate LFs in the redshift range [0.25-1.25]. We find that the larger flattening in the slope of the K-band NCs is mostly a consequence of a prominent decrease in the characteristic density (φ∗) around z∼1, and an almost flat evolution of M∗.
  • Item
    Creating S0s with Major Mergers: A 3D View
    (Galaxies, 2015) Querejeta, Miguel; Eliche Moral, María del Carmen; Tapia, Trinidad; Borlaff, Alejandro; Van de Ven, Glenn; Lyubenova, Mariya; Martig, Marie; Falcón Barroso, Jesús; Méndez Abreu, Jairo; Zamorano Calvo, Jaime; Gallego Maestro, Jesús
    A number of simulators have argued that major mergers can sometimes preserve discs, but the possibility that they could explain the emergence of lenticular galaxies (S0s) has been generally neglected. In fact, observations of S0s reveal a strong structural coupling between their bulges and discs, which seems difficult to reconcile with the idea that they come from major mergers. However, in our recent papers we have used N-body simulations of binary mergers to show that, under favourable conditions, discs are first destroyed but soon regrow out of the leftover debris, matching observational photometric scaling relations. Additionally, we have shown how the merger scenario agrees with the recent discovery that S0s and most spirals are not compatible in an angular momentum-concentration plane. This important result from CALIFA constitutes a serious objection to the idea that spirals transform into S0s mainly by fading (e.g., via ram-pressure stripping, as that would not explain the observed simultaneous change in λ_Re and concentration), but our simulations of major mergers do explain that mismatch. From such a 3D comparison we conclude that mergers must be a relevant process in the build-up of the current population of S0s.
  • Item
    MEGARA developments at LICA-UCM
    (Revista Mexicana de astronomía y astrofísica, 2013) Zamorano Calvo, Jaime; Gil de Paz, Armando; Gallego Maestro, Jesús; Cardiel López, Nicolás; Eliche Moral, María del Carmen; Pascual Ramírez, Sergio; Castillo Morales, África; Marino, Raffaella Anna; Villar, V.; García Vargas, M. L.; Tulloch, S. M.; Maldonado, M.; Sánchez Blanco, E.; Carrasco, E.; Sánchez, F. M.; Vílchez, J. M.; Muñoz, V.; Aguirre, D.
    LICA-UCM is the brand new laboratory for scientific advanced instrumentation (Laboratorio de Investigacion Cientifica Avanzada) at Universidad Complutense de Madrid where MEGARA integration will take place.
  • Item
    Evolution induced by dry minor mergers onto fast-rotator S0 galaxies
    (Astronomy & Astrophysics, 2014) Tapia, Trinidad; Eliche Moral, María del Carmen; Querejeta, Miguel; Balcells, Marc; González García, A. César; Prieto, Mercedes; Aguerri, J. Alfonso L.; Gallego Maestro, Jesús; Zamorano Calvo, Jaime; Rodríguez Pérez, Cristina; Borlaff, Alejandro
    Context. Numerical studies have shown that the properties of the S0 galaxies with kinematics intermediate between fast and slow rotators are difficult to explain by a scenario of major mergers. Aims. We investigate whether the smoother perturbation induced by minor mergers can reproduce these systems. Methods. We analysed collisionless N-body simulations of intermediate and minor dry mergers onto S0s to determine the structural and kinematic evolution induced by the encounters. The original primary galaxies represent gas-poor fast-rotator S0b and S0c galaxies with high intrinsic ellipticities. The original bulges are intrinsically spherical and have low rotation. Different mass ratios, parent bulges, density ratios, and orbits were studied. Results. Minor mergers induce a lower decrease of the global rotational support (as provided by λ_e) than encounters of lower mass ratios, which results in S0s with properties intermediate between fast and slow rotators. The resulting remnants are intrinsically more triaxial, less flattened, and span the whole range of apparent ellipticities up to ϵ_e ~ 0.8. They do not show lower apparent ellipticities in random projections than initially; on the contrary, the formation of oval distortions and the disc thickening increase the percentage of projections at 0.4 < ϵ_e < 0.7. In the experiments with S0b progenitor galaxies, minor mergers tend to spin up the bulge and to slightly decrease its intrinsic ellipticity, whereas in the cases of primary S0c galaxies they keep the rotational support of the bulge nearly constant and significantly decrease its intrinsic ellipticity. The remnant bulges remain nearly spherical (B/A ~ C/A> 0.9), but exhibit a wide range of triaxialities (0.20 < T < 1.00). In the plane of global anisotropy of velocities (δ) vs. intrinsic ellipticity (ϵ_e,intr), some of our models extend the linear trend found in previous major merger simulations towards higher ϵ_e,intr values, while others clearly depart from it (depending on the progenitor S0). This is consistent with the wide dispersion exhibited by real S0s in this diagram compared with ellipticals, which follow the linear trend drawn by major merger simulations. Conclusions. The smoother changes induced by minor mergers can explain the existence of S0s with intermediate kinematic properties between fast and slow rotators that are difficult to explain with major mergers. The different trends exhibited by ellipticals and S0 galaxies in the δ – ϵ_e diagram may be pointing to the different role played by major mergers in the build-up of each morphological type.
  • Item
    Formation of S0 galaxies through mergers. V - Antitruncated stellar discs resulting from major mergers
    (Astronomy & Astrophysics, 2014) Borlaff, Alejandro; Eliche Moral, María del Carmen; Rodríguez Pérez, Cristina; Querejeta, Miguel; Tapia, Trinidad; Pérez González, Pablo Guillermo; Zamorano Calvo, Jaime; Gallego Maestro, Jesús; Beckman, John
    Context. Lenticular galaxies (S0s) are more likely to host antitruncated (Type III) stellar discs than galaxies of later Hubble types. Major mergers are popularly considered too violent to make these breaks. Aims. We have investigated whether major mergers can result into S0-like remnants with realistic antitruncated stellar discs or not. Methods. We have analysed 67 relaxed S0 and E/S0 remnants resulting from dissipative N-body simulations of major mergers from the GalMer database. We have simulated realistic R-band surface brightness profiles of the remnants to identify those with antitruncated stellar discs. Their inner and outer discs and the breaks have been quantitatively characterized to compare with real data. Results. Nearly 70% of our S0-like remnants are antitruncated, meaning that major mergers that result in S0s have a high probability of producing Type III stellar discs. Our remnants lie on top of the extrapolations of the observational trends (towards brighter magnitudes and higher break radii) in several photometric diagrams, because of the higher luminosities and sizes of the simulations compared to observational samples. In scale-free photometric diagrams, simulations and observations overlap and the remnants reproduce the observational trends, so the physical mechanism after antitruncations is highly scalable. We have found novel photometric scaling relations between the characteristic parameters of the antitruncations in real S0s, which are also reproduced by our simulations. We show that the trends in all the photometric planes can be derived from three basic scaling relations that real and simulated Type III S0s fulfill: h_i ∝ R_brkIII, h_o ∝ R_brkIII, and μ_brkIII ∝ R_brkIII, where h_i and h_o are the scalelengths of the inner and outer discs, and μ_brkIII and R_brkIII are the surface brightness and radius of the breaks. Bars and antitruncations in real S0s are structurally unrelated phenomena according to the studied photometric planes. Conclusions. Major mergers provide a feasible mechanism to form realistic antitruncated S0 galaxies.
  • Item
    Making observations with GTC/MEGARA easier: the MEGARA observing preparation software suite
    (Revista Mexicana de astronomía y astrofísica, 2013) Eliche Moral, María del Carmen; Pascual Ramírez, Sergio; Gruel, N.; Castillo Morales, África; Carrasco, E.; Gallego Maestro, Jesús; García Vargas, M. L.; Gil de Paz, Armando; Marino, Raffaella Anna; Morales, I.; Pérez Calpena, A.; Sánchez, F. M.; Vílchez, J. M.; Villar, V.; Zamorano Calvo, Jaime
    MEGARA (Multi-Espectrografo en GTC de Alta Resolucion para Astronomia) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4 m telescope in La Palma. Its relatively complex layout makes necessary a set of tools to facilitate the observation preparation to the user. The MEGARA Observing Preparation Software Suite (MOPSS) consists on three software components designed to assist observers to optimally plan their observations with GTC/MEGARA: the Exposure Time Calculator, the Image Simulator, and the Fiber MOS Positioning tool. We describe these software tools and the status of their prototypes up to the date.
  • Item
    The evolutionary paths among galaxy types on the red sequence at 0.3 < Z < 1.5
    (Fourth science meeting with the GTC, 2013) Eliche Moral, María del Carmen; Prieto, M.; Balcells, M.; Abreu, D.; Barro, Guillermo; Cristobal Hornillos, D.; Domínguez Palmero, L.; Erwin, P.; Gallego Maestro, Jesús; Guzmán, R.; Hempel, A.; López Sanjuan, C.; Pérez González, Pablo Guillermo; Zamorano Calvo, Jaime
    We have studied the main evolutionary paths among the galaxy types residing on the massive end of the Red Sequence and nearby locations on the Green Valley during the last ∼9 Gyr. The morphological and star formation properties of a sample of these galaxies at 0 . 3 < z < 1 .5 with stellar masses M_∗ > 5 × 10^10 M_⊙ have been analysed. We present direct observational evidence for the first time of the existence of two main evolutionary paths among the different red galaxy types since z ∼ 1 .5, which provide some clues on the nature of the processes that have governed the assembly of present-day massive quiescent galaxies. The results are in excellent agreement with the hierarchical evolutionary framework proposed in the Eliche-Moral et al. (2010) model. Data from SHARDS (one of the ESO/GTC Large Programmes approved in 2009A) will complement and improve the present findings, shedding some light into many of the still unsettled questions concerning the migration of galaxies from the Blue Cloud to the Red Sequence at z < 1 .5.
  • Item
    Formation of stellar inner discs and rings in spiral galaxies through minor mergers
    (Fourth Science Meeting with the GTC, 2013) Eliche Moral, María del Carmen; González García, A. C.; Balcells, M.; Aguerri, J.A.L.; Gallego Maestro, Jesús; Zamorano Calvo, Jaime; Prieto Matías, Manuel
    Recent observations show that inner disks and rings (IDs and IRs) are not preferentially found in barred galaxies, pointing to the relevance of formation mechanisms different to the traditional bar-origin scenario. Nevertheless, the role of minor mergers in the formation of these inner components (ICs), while often invoked, is still poorly understood. We have investigated the capability of minor mergers to trigger the formation of IDs and IRs in spiral galaxies through collisionless N-body simulations. Our models prove that minor mergers are an efficient mechanism to form rotationally-supported stellar ICs in spirals, neither requiring strong dissipation nor noticeable bars, and suggest that their role in the formation of ICs must have been much more complex than just bar triggering.
  • Item
    Formation of S0 galaxies through mergers Antitruncated stellar discs resulting from major mergers
    (Astronomy & Astrophysics, 2014) Borlaff, Alejandro; Eliche Moral, María del Carmen; Rodríguez Pérez, Cristina; Querejeta, Miguel; Tapia, Trinidad; Pérez González, Pablo Guillermo; Zamorano Calvo, Jaime; Gallego Maestro, Jesús; Beckman, John
    Context. Lenticular galaxies (S0’s) are more likely to host antitruncated (Type-III) stellar discs than galaxies of later Hubble types. Major mergers are popularly considered too violent mechanisms to form these breaks. Aims. We have investigated whether major mergers can result into S0-like remnants with realistic antitruncated stellar discs or not. Methods. We have analysed 67 relaxed S0 and E/S0 remnants resulting from dissipative N-body simulations of major mergers from the GalMer database. We have simulated realistic R-band surface brightness profiles of the remnants to identify those with antitruncated stellar discs. Their inner and outer discs and the breaks have been quantitatively characterized to compare with real data. Results. Nearly 70% of our S0-like remnants are antitruncated, meaning that major mergers that result in S0’s have a high probability of producing Type-III stellar discs. Our remnants lie on top of the extrapolations of the observational trends (towards brighter magnitudes and higher break radii) in several photometric diagrams, due to the higher luminosities and sizes of the simulations compared to observational samples. In scale-free photometric diagrams, simulations and observations overlap and the remnants reproduce the observational trends, so the physical mechanism after antitruncations is highly scalable. We have found novel photometric scaling relations between the characteristic parameters of the antitruncations in real S0’s, which are also reproduced by our simulations. We show that the trends in all the photometric planes can be derived from three basic scaling relations that real and simulated Type-III S0’s fulfill: hi ∝ RbrkIII, ho ∝ RbrkIII, and µbrkIII ∝ RbrkIII, where hi and ho are the scalelenghts of the inner and outer discs, and µbrkIII and RbrkIII are the surface brightness and radius of the breaks. Bars and antitruncations in real S0’s are structurally unrelated phenomena according to the studied photometric planes. Conclusions. Mayor mergers provide a feasible mechanism to form realistic antitruncated S0 galaxies.