Person:
Zamorano Calvo, Jaime

Loading...
Profile Picture
First Name
Jaime
Last Name
Zamorano Calvo
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Astronomía y Astrofísica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 41
  • Item
    Exploring the star forming regions in vigorous star forming galaxies at Z=0.84
    (Fourth science meeting with the GTC, 2013) Villar, V.; Guzmán, R.; Gallego Maestro, Jesús; Pérez González, Pablo Guillermo; Zamorano Calvo, Jaime
    We analyze the properties of star forming regions in a sample of star forming galaxies at z = 0.84. Star forming regions are extracted from B band ACS-HST images. Previously we have substracted a model of the galaxy, fitting a bulged+disk model to the whole galaxy. Special care has been taken masking the star forming regions in the model fitting procedure, yielding more reliable results. We present here the properties of these star forming regions.
  • Item
    UV-to-fir analysis of spitzer/irac sources in the extended groth strip. II. Photometric redshifts, stellar masses, and star formation rates
    (Astrophysical journal supplement series, 2011) Barro, Guillermo; Pérez González, Pablo Guillermo; Gallego Maestro, Jesús; Ashby, M. L. N.; Kajisawa, M.; Miyazaki, S.; Villar, V.; Yamada, T.; Zamorano Calvo, Jaime
    Based on the ultraviolet to far-infrared photometry already compiled and presented in a companion paper (Paper I), we present a detailed spectral energy distribution (SED) analysis of nearly 80,000 IRAC 3.6 + 4.5 μ m selected galaxies in the Extended Groth Strip. We estimate photometric redshifts, stellar masses, and star formation rates (SFRs) separately for each galaxy in this large sample. The catalog includes 76,936 sources with [3.6] ≤ 23.75 (85% completeness level of the IRAC survey) over 0.48 deg^2. The typical photometric redshift accuracy is ∆z/(1 + z) = 0.034, with a catastrophic outlier fraction of just 2%. We quantify the systematics introduced by the use of different stellar population synthesis libraries and initial mass functions in the calculation of stellar masses. We find systematic offsets ranging from 0.1 to 0.4 dex, with a typical scatter of 0.3 dex. We also provide UV- and IR-based SFRs for all sample galaxies, based on several sets of dust emission templates and SFR indicators. We evaluate the systematic differences and goodness of the different SFR estimations using the deep FIDEL 70 μ m data available in the Extended Groth Strip. Typical random uncertainties of the IR-bases SFRs are a factor of two, with non-negligible systematic effects at z ≳1.5 observed when only MIPS 24 μ m data are available. All data products (SEDs, postage stamps from imaging data, and different estimations of the photometric redshifts, stellar masses, and SFRs of each galaxy) described in this and the companion paper are publicly available, and they can be accessed through our the Web interface utility Rainbow-navigator.
  • Item
    The minor role of gas-rich major mergers in the rise of intermediate-mass early types at z ≤ 1
    (Astrophysical journal, 2010) López Sanjuan, Carlos; Balcells, Marc; Pérez González, Pablo Guillermo; Barro, Guillermo; García Dabó, César Enrique; Gallego Maestro, Jesús; Zamorano Calvo, Jaime
    We study the evolution of galaxy structure since z ~ 1 to the present. From a Great Observatories Origins Deep Survey South (GOODS-S) multi-band catalog, we define (blue) luminosity- and mass-weighted samples, limited by MB ≤ –20 and M sstarf ≥ 1010 M ☉, comprising 1122 and 987 galaxies, respectively. We extract early-type (ET; E/S0/Sa) and late-type (LT; Sb-Irr) subsamples by their position in the concentration-asymmetry plane, in which galaxies exhibit a clear bimodality. We find that the ET fraction, f ET, rises with cosmic time, with a corresponding decrease in the LT fraction, f LT, in both luminosity- and mass-selected samples. However, the evolution of the comoving number density is very different: the decrease in the total number density of MB ≤ –20 galaxies since z = 1 is due to the decrease in the LT population, which accounts for ~75% of the total star formation rate in the range under study, while the increase in the total number density of M sstarf ≥ 1010 M ☉ galaxies in the same redshift range is due to the evolution of ETs. This suggests that we need a structural transformation between LT galaxies that form stars actively and ET galaxies in which the stellar mass is located. Comparing the observed evolution with the gas-rich major merger rate in GOODS-S, we infer that only ~20% of the new ET galaxies with M sstarf ≥ 1010 M ☉ appeared since z ~ 1 can be explained by this kind of mergers, suggesting that minor mergers and secular processes may be the driving mechanisms of the structural evolution of intermediate-mass (M sstarf ~ 4 × 1010 M ☉) galaxies since z ~ 1.
  • Item
    Exploring the evolutionary paths of the most massive galaxies since z ~ 2
    (Astrophysical journal, 2008) Pérez González, Pablo Guillermo; Trujillo, Ignacio; Barro, Guillermo; Gallego Maestro, Jesús; Zamorano Calvo, Jaime; Conselice, Christopher J.
    We use Spitzer MIPS data from the FIDEL Legacy Project in the extended Groth strip to analyze the stellar mass assembly of massive (M > 1011 M_☉) galaxies at z < 2 as a function of structural parameters. We find 24 μm emission for more than 85% of the massive galaxies morphologically classified as disks, and for more than 57% of the massive systems morphologically classified as spheroids at any redshift, with about 8% of sources harboring a bright X-ray- and/or infrared-emitting AGN. More noticeably, ~60% of all compact massive galaxies at z = 1–2 are detected at 24 μm, even when rest-frame optical colors reveal that they are dead and evolving passively. For spheroid-like galaxies at a given stellar mass, the sizes of MIPS nondetections are smaller by a factor of ~1.2 in comparison with IR-bright sources. We find that disklike massive galaxies present specific SFRs ranging from 0.04 to 0.2 Gyr^−1 at z < 1 (SFRs ranging from 1 to 10 M_☉ yr^−1), typically a factor of 3-6 higher than massive spheroid-like objects in the same redshift range. At z > 1, and more pronouncedly at z > 1.3, the median specific SFRs of the disks and spheroids detected by MIPS are very similar, ranging from 0.1 to 1 Gyr^−1 (SFR = 10–200 M_☉ yr^−1). We estimate that massive spheroid-like galaxies may have doubled (at the most) their stellar mass from star-forming events at z < 2: less than 20% mass increase at 1.7 < z < 2.0, up to 40% more at 1.1 < z < 1.7, and less than 20% additional increase at z < 1. Disklike galaxies may have tripled (at the most) their stellar mass at z < 2 from star formation alone: up to ~40% mass increase at 1.7 < z < 2.0, and less than 180% additional increase below z = 1.7 occurred at a steady rate.
  • Item
    Formation of S0 galaxies through mergers. V - Antitruncated stellar discs resulting from major mergers
    (Astronomy & Astrophysics, 2014) Borlaff, Alejandro; Eliche Moral, María del Carmen; Rodríguez Pérez, Cristina; Querejeta, Miguel; Tapia, Trinidad; Pérez González, Pablo Guillermo; Zamorano Calvo, Jaime; Gallego Maestro, Jesús; Beckman, John
    Context. Lenticular galaxies (S0s) are more likely to host antitruncated (Type III) stellar discs than galaxies of later Hubble types. Major mergers are popularly considered too violent to make these breaks. Aims. We have investigated whether major mergers can result into S0-like remnants with realistic antitruncated stellar discs or not. Methods. We have analysed 67 relaxed S0 and E/S0 remnants resulting from dissipative N-body simulations of major mergers from the GalMer database. We have simulated realistic R-band surface brightness profiles of the remnants to identify those with antitruncated stellar discs. Their inner and outer discs and the breaks have been quantitatively characterized to compare with real data. Results. Nearly 70% of our S0-like remnants are antitruncated, meaning that major mergers that result in S0s have a high probability of producing Type III stellar discs. Our remnants lie on top of the extrapolations of the observational trends (towards brighter magnitudes and higher break radii) in several photometric diagrams, because of the higher luminosities and sizes of the simulations compared to observational samples. In scale-free photometric diagrams, simulations and observations overlap and the remnants reproduce the observational trends, so the physical mechanism after antitruncations is highly scalable. We have found novel photometric scaling relations between the characteristic parameters of the antitruncations in real S0s, which are also reproduced by our simulations. We show that the trends in all the photometric planes can be derived from three basic scaling relations that real and simulated Type III S0s fulfill: h_i ∝ R_brkIII, h_o ∝ R_brkIII, and μ_brkIII ∝ R_brkIII, where h_i and h_o are the scalelengths of the inner and outer discs, and μ_brkIII and R_brkIII are the surface brightness and radius of the breaks. Bars and antitruncations in real S0s are structurally unrelated phenomena according to the studied photometric planes. Conclusions. Major mergers provide a feasible mechanism to form realistic antitruncated S0 galaxies.
  • Item
    The evolutionary paths among galaxy types on the red sequence at 0.3 < Z < 1.5
    (Fourth science meeting with the GTC, 2013) Eliche Moral, María del Carmen; Prieto, M.; Balcells, M.; Abreu, D.; Barro, Guillermo; Cristobal Hornillos, D.; Domínguez Palmero, L.; Erwin, P.; Gallego Maestro, Jesús; Guzmán, R.; Hempel, A.; López Sanjuan, C.; Pérez González, Pablo Guillermo; Zamorano Calvo, Jaime
    We have studied the main evolutionary paths among the galaxy types residing on the massive end of the Red Sequence and nearby locations on the Green Valley during the last ∼9 Gyr. The morphological and star formation properties of a sample of these galaxies at 0 . 3 < z < 1 .5 with stellar masses M_∗ > 5 × 10^10 M_⊙ have been analysed. We present direct observational evidence for the first time of the existence of two main evolutionary paths among the different red galaxy types since z ∼ 1 .5, which provide some clues on the nature of the processes that have governed the assembly of present-day massive quiescent galaxies. The results are in excellent agreement with the hierarchical evolutionary framework proposed in the Eliche-Moral et al. (2010) model. Data from SHARDS (one of the ESO/GTC Large Programmes approved in 2009A) will complement and improve the present findings, shedding some light into many of the still unsettled questions concerning the migration of galaxies from the Blue Cloud to the Red Sequence at z < 1 .5.
  • Item
    Spitzer view on the downsizing scenario of galaxy formation and the role of AGN
    (Highlights of Spanish astrophysics V, 2010) Pérez González, Pablo Guillermo; Alonso Herrero, Almudena; Donley, Jennifer; Rieke, George; Barro, Guillermo; Gallego Maestro, Jesús; Zamorano Calvo, Jaime
    We present the latest results of the Spitzer Cosmological Surveys concerning the characterization of the evolution of galaxies in the last 12 Gyr (from z=4). We have analyzed the stellar mass function up to z=4 using a sample of more the 28,000 galaxies selected in the rest-frame near-infrared with Spitzer/IRAC. Our results confirm and quantify the “downsizing” scenario of galaxy formation. Based on the study of the specific SFRs of X-ray emitters, we discuss the role of AGN in the evolution of galaxies, arguing against the link between nuclear activity and the quenching of the star formation in massive galaxies at z<1.4.
  • Item
    Formation of S0 galaxies through mergers Antitruncated stellar discs resulting from major mergers
    (Astronomy & Astrophysics, 2014) Borlaff, Alejandro; Eliche Moral, María del Carmen; Rodríguez Pérez, Cristina; Querejeta, Miguel; Tapia, Trinidad; Pérez González, Pablo Guillermo; Zamorano Calvo, Jaime; Gallego Maestro, Jesús; Beckman, John
    Context. Lenticular galaxies (S0’s) are more likely to host antitruncated (Type-III) stellar discs than galaxies of later Hubble types. Major mergers are popularly considered too violent mechanisms to form these breaks. Aims. We have investigated whether major mergers can result into S0-like remnants with realistic antitruncated stellar discs or not. Methods. We have analysed 67 relaxed S0 and E/S0 remnants resulting from dissipative N-body simulations of major mergers from the GalMer database. We have simulated realistic R-band surface brightness profiles of the remnants to identify those with antitruncated stellar discs. Their inner and outer discs and the breaks have been quantitatively characterized to compare with real data. Results. Nearly 70% of our S0-like remnants are antitruncated, meaning that major mergers that result in S0’s have a high probability of producing Type-III stellar discs. Our remnants lie on top of the extrapolations of the observational trends (towards brighter magnitudes and higher break radii) in several photometric diagrams, due to the higher luminosities and sizes of the simulations compared to observational samples. In scale-free photometric diagrams, simulations and observations overlap and the remnants reproduce the observational trends, so the physical mechanism after antitruncations is highly scalable. We have found novel photometric scaling relations between the characteristic parameters of the antitruncations in real S0’s, which are also reproduced by our simulations. We show that the trends in all the photometric planes can be derived from three basic scaling relations that real and simulated Type-III S0’s fulfill: hi ∝ RbrkIII, ho ∝ RbrkIII, and µbrkIII ∝ RbrkIII, where hi and ho are the scalelenghts of the inner and outer discs, and µbrkIII and RbrkIII are the surface brightness and radius of the breaks. Bars and antitruncations in real S0’s are structurally unrelated phenomena according to the studied photometric planes. Conclusions. Mayor mergers provide a feasible mechanism to form realistic antitruncated S0 galaxies.
  • Item
    UV-to-fir analysis of spitzer/irac sources in the extended groth strip. I. Multi-wavelength photometry and spectral energy distributions
    (Astrophysical journal supplement series, 2011) Barro, Guillermo; Pérez González, Pablo Guillermo; Gallego Maestro, Jesús; Ashby, M. L. N.; Kajisawa, M.; Miyazaki, S.; Villar, V.; Yamada, T.; Zamorano Calvo, Jaime
    We present an IRAC 3.6+4.5 μm selected catalog in the Extended Groth Strip (EGS) containing photometry from the ultraviolet to the far-infrared and stellar parameters derived from the analysis of the multi-wavelength data. In this paper, we describe the method used to build coherent spectral energy distributions (SEDs) for all the sources. In a forthcoming companion paper, we analyze those SEDs to obtain robust estimations of stellar parameters such as photometric redshifts, stellar masses, and star formation rates. The catalog comprises 76,936 sources with [3.6] ≤ 23.75 mag (85% completeness level of the IRAC survey in the EGS) over 0.48 deg^2. For approximately 16% of this sample, we are able to deconvolve the IRAC data to obtain robust fluxes for the multiple counterparts found in ground-based optical images. Typically, the SEDs of the IRAC sources in our catalog count with more than 15 photometric data points, spanning from the ultraviolet wavelengths probed by GALEX to the far-infrared observed by Spitzer, and going through ground-and space-based optical and near-infrared data taken with 2-8 m class telescopes. Approximately 95% and 90% of all IRAC sources are detected in the deepest optical and near-infrared bands. These fractions are reduced to 85% and 70% for S/N > 5 detections in each band. Only 10% of the sources in the catalog have optical spectroscopy and redshift estimations. Almost 20% and 2% of the sources are detected by MIPS at 24 and 70 μm, respectively. We also cross-correlate our catalog with public X-ray and radio catalogs. Finally, we present the Rainbow Navigator public Web interface utility, designed to browse all the data products resulting from this work, including images, spectra, photometry, and stellar parameters.
  • Item
    The galaxy major merger fraction to z ~ 1
    (Astronomy and astrophysics, 2009) López Sanjuan, C.; Balcells, M.; Pérez González, Pablo Guillermo; Barro, Guillermo; García Dabó, C. E.; Gallego Maestro, Jesús; Zamorano Calvo, Jaime
    Aims. The importance of disc-disc major mergers in galaxy evolution remains uncertain. We study the major merger fraction in a SPITZER/IRAC-selected catalogue in the GOODS-S field up to z ~ 1 for luminosity- and mass-limited samples. Methods. We select disc-disc merger remnants on the basis of morphological asymmetries/distortions, and address three main sources of systematic errors: (i) we explicitly apply morphological K-corrections; (ii) we measure asymmetries in galaxies artificially redshifted to z_d = 1.0 to deal with loss of morphological information with redshift; and (iii) we take into account the observational errors in z and A, which tend to overestimate the merger fraction, though use of maximum likelihood techniques. Results. We obtain morphological merger fractions (f_m^mph) below 0.06 up to z ~ 1. Parameterizing the merger fraction evolution with redshift as f_m^mph (z) = f_m^mph (0)(1 + z)^m, we find that m = 1.8 ± 0.5 for M(B)≤ -20 galaxies, while m = 5.4 ± 0.4 for M_* ≥ 10^10 M_⨀ galaxies. When we translate our merger fractions to merger rates (R_m^mph), their evolution, parameterized as R_m^mph (z) = R_m^mph (0)(1+ z)^n, is quite similar in both cases: n = 3.3 ± 0.8 for M(B) ≤ -20 galaxies, and n = 3.5 ± 0.4 for M_* ≥10^10 M_⨀ galaxies. Conclusions. Our results imply that only similar to 8% of today's M(star) ≥ 10^10 M_⨀ galaxies have undergone a disc-disc major merger since z ~ 1. In addition, ~ 21% of M_* ≥ 10(10) M_⨀ galaxies at z ~ 1 have undergone one of these mergers since z similar to 1.5. This suggests that disc-disc major mergers are not the dominant process in the evolution of M_* ≥ 10(10) M_⨀ galaxies since z 1, with only 0.2 disc-disc major mergers per galaxy, but may be an important process at z > 1, with ~ 1 merger per galaxy at 1 < z < 3.