Aviso: para depositar documentos, por favor, inicia sesión e identifícate con tu cuenta de correo institucional de la UCM con el botón MI CUENTA UCM. No emplees la opción AUTENTICACIÓN CON CONTRASEÑA
 

Exploring the evolutionary paths of the most massive galaxies since z ~ 2

Loading...
Thumbnail Image

Full text at PDC

Publication date

2008

Advisors (or tutors)

Editors

Journal Title

Journal ISSN

Volume Title

Publisher

American Astronomical Society
Citations
Google Scholar

Citation

Abstract

We use Spitzer MIPS data from the FIDEL Legacy Project in the extended Groth strip to analyze the stellar mass assembly of massive (M > 1011 M_☉) galaxies at z < 2 as a function of structural parameters. We find 24 μm emission for more than 85% of the massive galaxies morphologically classified as disks, and for more than 57% of the massive systems morphologically classified as spheroids at any redshift, with about 8% of sources harboring a bright X-ray- and/or infrared-emitting AGN. More noticeably, ~60% of all compact massive galaxies at z = 1–2 are detected at 24 μm, even when rest-frame optical colors reveal that they are dead and evolving passively. For spheroid-like galaxies at a given stellar mass, the sizes of MIPS nondetections are smaller by a factor of ~1.2 in comparison with IR-bright sources. We find that disklike massive galaxies present specific SFRs ranging from 0.04 to 0.2 Gyr^−1 at z < 1 (SFRs ranging from 1 to 10 M_☉ yr^−1), typically a factor of 3-6 higher than massive spheroid-like objects in the same redshift range. At z > 1, and more pronouncedly at z > 1.3, the median specific SFRs of the disks and spheroids detected by MIPS are very similar, ranging from 0.1 to 1 Gyr^−1 (SFR = 10–200 M_☉ yr^−1). We estimate that massive spheroid-like galaxies may have doubled (at the most) their stellar mass from star-forming events at z < 2: less than 20% mass increase at 1.7 < z < 2.0, up to 40% more at 1.1 < z < 1.7, and less than 20% additional increase at z < 1. Disklike galaxies may have tripled (at the most) their stellar mass at z < 2 from star formation alone: up to ~40% mass increase at 1.7 < z < 2.0, and less than 180% additional increase below z = 1.7 occurred at a steady rate.

Research Projects

Organizational Units

Journal Issue

Description

© 2008. The American Astronomical Society. We thank an anonymous referee for her/his very constructive comments. We acknowledge support from the Spanish Programa Nacional de Astronomía y Astrofísica under grants AYA 2006-02358 and AYA 2006- 15698- C02-02. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, Caltech under NASA contract 1407. P. G. P.-G. and I. T. acknowledge support from the Ramón y Cajal Program financed by the Spanish Government and the European Union.

Unesco subjects

Keywords

Collections