Person:
Cuesta Martínez, Ángel

Loading...
Profile Picture
First Name
Ángel
Last Name
Cuesta Martínez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 9 of 9
  • Item
    Generation and characterization of monospecific and bispecific hexavalent trimerbodies
    (mAbs, 2013) Blanco Toribio, Ana; Sainz Pastor, Noelia; Álvarez Cienfuegos, Ana; Merino, Nekane; Sánchez Martín, David; Bonet, Jaume; Santos Valle, Patricia; Sanz, Laura; Oliva, Baldo; Blanco, Francisco J.; Álvarez Vallina, Luis; Cuesta Martínez, Ángel
    Here, we describe a new class of multivalent and multispecific antibody-based reagents for therapy. The molecules, termed “trimerbodies,” use a modified version of the N-terminal trimerization region of human collagen XVIII noncollagenous 1 domain flanked by two flexible linkers as trimerizing scaffold. By fusing single-chain variable fragments (scFv) with the same or different specificity to both N- and C-terminus of the trimerizing scaffold domain, we produced monospecific or bispecific hexavalent molecules that were efficiently secreted as soluble proteins by transfected mammalian cells. A bispecific anti-laminin x anti-CD3 N-/C-trimerbody was found to be trimeric in solution, very efficient at recognizing purified plastic-immobilized laminin and CD3 expressed at the surface of T cells, and remarkably stable in human serum. The bispecificity was further demonstrated in T cell activation studies. In the presence of laminin-rich substrate, the bispecific anti-laminin x anti-CD3 N-/C-trimerbody stimulated a high percentage of human T cells to express surface activation markers. These results suggest that the trimerbody platform offers promising opportunities for the development of the next-generation therapeutic antibodies, i.e., multivalent and bispecific molecules with a format optimized for the desired pharmacokinetics and adapted to the pathological context.
  • Item
    PHD3 Controls Lung Cancer Metastasis and Resistance to EGFR Inhibitors through TGFα
    (Cancer Research, 2018) Dopeso, Higinio; Jiao, Hui-Ke; Cuesta Martínez, Ángel; Henze, Anne-Theres; Jurida, Liane; Kracht, Michael; Acker-Palmer, Amparo; Boyan K. Garvalov; Acker, Till
    Lung cancer is the leading cause of cancer-related death worldwide, in large part due to its high propensity to metastasize and to develop therapy resistance. Adaptive responses to hypoxia and epithelial–mesenchymal transition (EMT) are linked to tumor metastasis and drug resistance, but little is known about how oxygen sensing and EMT intersect to control these hallmarks of cancer. Here, we show that the oxygen sensor PHD3 links hypoxic signaling and EMT regulation in the lung tumor microenvironment. PHD3 was repressed by signals that induce EMT and acted as a negative regulator of EMT, metastasis, and therapeutic resistance. PHD3 depletion in tumors, which can be caused by the EMT inducer TGFβ or by promoter methylation, enhanced EMT and spontaneous metastasis via HIF-dependent upregulation of the EGFR ligand TGFα. In turn, TGFα stimulated EGFR, which potentiated SMAD signaling, reinforcing EMT and metastasis. In clinical specimens of lung cancer, reduced PHD3 expression was linked to poor prognosis and to therapeutic resistance against EGFR inhibitors such as erlotinib. Reexpression of PHD3 in lung cancer cells suppressed EMT and metastasis and restored sensitivity to erlotinib. Taken together, our results establish a key function for PHD3 in metastasis and drug resistance and suggest opportunities to improve patient treatment by interfering with the feedforward signaling mechanisms activated by PHD3 silencing. Significance: This study links the oxygen sensor PHD3 to metastasis and drug resistance in cancer, with implications for therapeutic improvement by targeting this system.
  • Item
    11PS04 is a new chemical entity identified by microRNA-based biosensing with promising therapeutic potential against cancer stem cells
    (Scientific Reports, 2019) Aguado Sánchez, Tania; Romero-Revilla, José A.; Granados, Rosario; Campuzano Ruiz, Susana; Torrente Rodríguez, Rebeca Magnolia; Cuesta Martínez, Ángel; Albiñana, Virginia; Botella, Luisa María; Santamaría, Silvia; Garcia-Sanz, Jose A.; Pingarrón Carrazón, José Manuel; Sánchez-Sancho, Francisco; Sánchez-Puelles, José-María
    Phenotypic drug discovery must take advantage of the large amount of clinical data currently available. In this sense, the impact of microRNAs (miRs) on human disease and clinical therapeutic responses is becoming increasingly well documented. Accordingly, it might be possible to use miR-based signatures as phenotypic read-outs of pathological status, for example in cancer. Here, we propose to use the information accumulating regarding the biology of miRs from clinical research in the preclinical arena, adapting it to the use of miR biosensors in the earliest steps of drug screening. Thus, we have used an amperometric dual magnetosensor capable of monitoring a miR-21/miR-205 signature to screen for new drugs that restore these miRs to non-tumorigenic levels in cell models of breast cancer and glioblastoma. In this way we have been able to identify a new chemical entity, 11PS04 ((3aR,7aS)-2-(3-propoxyphenyl)-7,7a-dihydro-3aH-pyrano[3,4-d]oxazol-6(4H)-one), the therapeutic potential of which was suggested in mechanistic assays of disease models, including 3D cell culture (oncospheres) and xenografts. These assays highlighted the potential of this compound to attack cancer stem cells, reducing the growth of breast and glioblastoma tumors in vivo. These data demonstrate the enhanced chain of translatability of this strategy, opening up new perspectives for drug-discovery pipelines and highlighting the potential of miR-based electro-analytical sensors as efficient tools in modern drug discovery.
  • Item
    Enhancement of DNA vaccine potency through linkage of antigen to filamentous bacteriophage coat protein III domain I
    (Immunology, 2006) Cuesta Martínez, Ángel; Suárez Porto, Eduardo; Larsen, Martin; Jensen, Kim Bak; Sanz, Laura; Compte Grau, Marta; Kristensen, Peter; Álvarez‐Vallina, Luis
    Although DNA‐based cancer vaccines have been successfully tested in mouse models, a major drawback of cancer vaccination still remains, namely that tumour antigens are weak and fail to generate a vigorous immune response in tumour‐bearing patients. Genetic technology offers strategies for promoting immune pathways by adding immune‐activating genes to the tumour antigen sequence. In this work, we converted a model non‐immunogenic antigen into a vaccine by fusing it to domain I of the filamentous bacteriophage coat protein III gene. Vaccination with a DNA construct encoding the domain I fusion generated antigen‐specific T helper 1‐type cellular immune responses. These results demonstrate that the incorporation of protein III into a DNA vaccine formulation can modulate the gene‐mediated immune response and may thus provide a strategy for improving its therapeutic effect.
  • Item
    New and Old Key Players in Liver Cancer
    (International Journal of Molecular Sciences, 2023) Cuesta Martínez, Ángel; Palao, Nerea; Bragado Domingo, Paloma; Gutiérrez Uzquiza, Álvaro; Herrera González, Blanca María; Sánchez Muñoz, Aranzazu; Porras Gallo, María Almudena
    Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-β is discussed. HGF and TGF-β are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.
  • Item
    Deep Learning Reveals Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body
    (Cell, 2019) Pan, Chenchen; Schoppe, Oliver; Parra-Damas, Arnaldo; Cai, Ruiyao; Todorov, Mihail Ivilinov; Gondi, Gabor; Neubeck, Bettina von; Böğürcü-Seidel, Nuray; Seidel, Sascha; Sleiman, Katia; Veltkamp, Christian; Förstera, Benjamin; Mai, Hongcheng; Rong, Zhouyi; Trompak, Omelyan; Ghasemigharagoz, Alireza; Reimer, Madita Alice; Javier Coronel; Jeremias, Irmela; Saur, Dieter; Acker-Palmer, Amparo; Acker, Till; Garvalov, Boyan K.; Menze, Bjoern; Zeidler, Reinhard; Ertürk, Ali; Cuesta Martínez, Ángel
    Reliable detection of disseminated tumor cells and of the biodistribution of tumor-targeting therapeutic antibodies within the entire body has long been needed to better understand and treat cancer metastasis. Here, we developed an integrated pipeline for automated quantification of cancer metastases and therapeutic antibody targeting, named DeepMACT. First, we enhanced the fluorescent signal of cancer cells more than 100-fold by applying the vDISCO method to image metastasis in transparent mice. Second, we developed deep learning algorithms for automated quantification of metastases with an accuracy matching human expert manual annotation. Deep learning-based quantification in 5 different metastatic cancer models including breast, lung, and pancreatic cancer with distinct organotropisms allowed us to systematically analyze features such as size, shape, spatial distribution, and the degree to which metastases are targeted by a therapeutic monoclonal antibody in entire mice. DeepMACT can thus considerably improve the discovery of effective antibody-based therapeutics at the pre-clinical stage.
  • Item
    The Multicompartmental p32/gClqR as a New Target for Antibody-based Tumor Targeting Strategies
    (Journal of Biological Chemistry, 2011) Sánchez-Martín, David; Fogal, Valentina; Ruoslahti, Erkki; Álvarez-Vallina, Luis; Cuesta Martínez, Ángel
    Tumor-associated cell surface antigens and tumor-associated vascular markers have been used as a target for cancer intervention strategies. However, both types of targets have limitations due to accessibility, low and/or heterogeneous expression, and presence of tumor-associated serum antigen. It has been previously reported that a mitochondrial/cell surface protein, p32/gC1qR, is the receptor for a tumor-homing peptide, LyP-1, which specifically recognizes an epitope in tumor cells, tumor lymphatics, and tumor-associated macrophages/myeloid cells. Using antibody phage technology, we have generated an anti-p32 human monoclonal antibody (2.15). The 2.15 antibody, expressed in single-chain fragment variable and in trimerbody format, was then characterized in vivo using mice grafted subcutaneously with MDA-MB-231 human breast cancers cells, revealing a highly selective tumor uptake. The intratumoral distribution of the antibody was consistent with the expression pattern of p32 in the surface of some clusters of cells. These results demonstrate the potential of p32 for antibody-based tumor targeting strategies and the utility of the 2.15 antibody as targeting moiety for the selective delivery of imaging and therapeutic agents to tumors.
  • Item
    New and Old Key Players in Liver Cancer
    (International Journal of Molecular Sciences, 2023) Cuesta Martínez, Ángel; Palao, Nerea; Bragado Domingo, Paloma; Gutiérrez Uzquiza, Álvaro; Herrera González, Blanca María; Sánchez Muñoz, Aranzazu; Porras Gallo, María Almudena; Arechederra, Maria; Tarantino, Giovanni; Berasain, Carmen
    Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-β is discussed. HGF and TGF-β are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.
  • Item
    C3G Protein, a New Player in Glioblastoma
    (International Journal of Molecular Sciences, 2021) Manzano Figueroa, Sara; Gutiérrez Uzquiza, Álvaro; Bragado Domingo, Paloma; Cuesta Martínez, Ángel; Guerrero, Carmen; Porras Gallo, María Almudena
    C3G (RAPGEF1) is a guanine nucleotide exchange factor (GEF) for GTPases from the Ras superfamily, mainly Rap1, although it also acts through GEF-independent mechanisms. C3G regulates several cellular functions. It is expressed at relatively high levels in specific brain areas, playing important roles during embryonic development. Recent studies have uncovered different roles for C3G in cancer that are likely to depend on cell context, tumour type, and stage. However, its role in brain tumours remained unknown until very recently. We found that C3G expression is downregulated in GBM, which promotes the acquisition of a more mesenchymal phenotype, enhancing migration and invasion, but not proliferation. ERKs hyperactivation, likely induced by FGFR1, is responsible for this pro-invasive effect detected in C3G silenced cells. Other RTKs (Receptor Tyrosine Kinases) are also dysregulated and could also contribute to C3G effects. However, it remains undetermined whether Rap1 is a mediator of C3G actions in GBM. Various Rap1 isoforms can promote proliferation and invasion in GBM cells, while C3G inhibits migration/invasion. Therefore, other RapGEFs could play a major role regulating Rap1 activity in these tumours. Based on the information available, C3G could represent a new biomarker for GBM diagnosis, prognosis, and personalised treatment of patients in combination with other GBM molecular markers. The quantification of C3G levels in circulating tumour cells (CTCs) in the cerebrospinal liquid and/or circulating fluids might be a useful tool to improve GBM patient treatment and survival.