Person:
Rodríguez Cueto, Carmen Aurora

Loading...
Profile Picture
First Name
Carmen Aurora
Last Name
Rodríguez Cueto
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Medicina
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierORCIDScopus Author IDDialnet ID

Search Results

Now showing 1 - 9 of 9
  • Item
    Up-regulation of CB2 receptors in reactive astrocytes in canine degenerative myelopathy, a disease model of amyotrophic lateral sclerosis
    (Disease Models Mechanisms, 2017) Fernández-Trapero, María; Coates, Joan R.; Rodríguez Cueto, Carmen Aurora; Lago Femia, Eva De; Pérez Díaz, Carmen; Fernández Ruiz, José Javier; Espejo Porras, Francisco
    Targeting of the CB2 receptor results in neuroprotection in the SOD1G93A mutant mouse model of amyotrophic lateral sclerosis (ALS). The neuroprotective effects of CB2 receptors are facilitated by their upregulation in the spinal cord of the mutant mice. Here, we investigated whether similar CB2 receptor upregulation, as well as parallel changes in other endocannabinoid elements, is evident in the spinal cord of dogs with degenerative myelopathy (DM), caused by mutations in the superoxide dismutase 1 gene (SOD1). We used well-characterized post-mortem spinal cords from unaffected and DM-affected dogs. Tissues were used first to confirm the loss of motor neurons using Nissl staining, which was accompanied by glial reactivity (elevated GFAP and Iba-1 immunoreactivity). Next, we investigated possible differences in the expression of endocannabinoid genes measured by qPCR between DM-affected and control dogs. We found no changes in expression of the CB1 receptor (confirmed with CB1 receptor immunostaining) or NAPE-PLD, DAGL, FAAH and MAGL enzymes. In contrast, CB2 receptor levels were significantly elevated in DM-affected dogs determined by qPCR and western blotting, which was confirmed in the grey matter using CB2 receptor immunostaining. Using double-labelling immunofluorescence, CB2 receptor immunolabelling colocalized with GFAP but not Iba-1, indicating upregulation of CB2 receptors on astrocytes in DM-affected dogs. Our results demonstrate a marked upregulation of CB2 receptors in the spinal cord in canine DM, which is concentrated in activated astrocytes. Such receptors could be used as a potential target to enhance the neuroprotective effects exerted by these glial cells.
  • Item
    Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders
    (Frontiers Neuroscience, 2016) Navarro, Gemma; Morales, Paula; Jagerovic, Nadine; Franco, Rafael; Rodríguez Cueto, Carmen Aurora; Fernández Ruiz, José Javier
    Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson's disease, Huntington's chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.
  • Item
    Dysregulation of the endocannabinoid signaling system in the cerebellum and brainstem in a transgenic mouse model of spinocerebellar ataxia type-3
    (Neuroscience, 2016) Hernández-Gálvez, Mariluz; Hillard, Cecilia J.; Maciel, Patricia; García-García, Luis; Valdeolivas, Sara; Rodríguez Cueto, Carmen Aurora; Pozo García, Miguel Ángel; Ramos Atance, José Antonio; Gómez Ruiz, María Sagrario; Fernández Ruiz, José Javier; García García, Luis
    Spinocerebellar ataxia type-3 (SCA-3) is a rare disease but it is the most frequent type within the autosomal dominant inherited ataxias. The disease lacks an effective treatment to alleviate major symptoms and to modify disease progression. Our recent findings that endocannabinoid receptors and enzymes are significantly altered in the post-mortem cerebellum of patients affected by autosomal-dominant hereditary ataxias suggest that targeting the endocannabinoid signaling system may be a promising therapeutic option. Our goal was to investigate the status of the endocannabinoid signaling system in a transgenic mouse model of SCA-3, in the two CNS structures most affected in this disease - cerebellum and brainstem. These animals exhibited progressive motor incoordination, imbalance, abnormal gait, muscle weakness, and dystonia, in parallel to reduced in vivo brain glucose metabolism, deterioration of specific neuron subsets located in the dentate nucleus and pontine nuclei, small changes in microglial morphology, and reduction in glial glutamate transporters. Concerning the endocannabinoid signaling, our data indicated no changes in CB2 receptors. By contrast, CB1 receptors increased in the Purkinje cell layer, in particular in terminals of basket cells, but they were reduced in the dentate nucleus. We also measured the levels of endocannabinoid lipids and found reductions in anandamide and oleoylethanolamide in the brainstem. These changes correlated with an increase in the FAAH enzyme in the brainstem, which also occurred in some cerebellar areas, whereas other endocannabinoid-related enzymes were not altered. Collectively, our results in SCA-3 mutant mice confirm a possible dysregulation in the endocannabinoid system in the most important brain structures affected in this type of ataxia, suggesting that a pharmacological manipulation addressed to correct these changes could be a promising option in SCA-3.
  • Item
    Prospects for cannabinoid therapies in basal ganglia disorders
    (British Journal of Pharmacology, 2011) Fernández Ruiz, José Javier; Moreno‐Martet, Miguel; Rodríguez Cueto, Carmen Aurora; Palomo‐Garo, Cristina; Gómez Cañas, María; Valdeolivas, Sara; Guaza, Carmen; Romero, Julián; Guzmán Pastor, Manuel; Mechoulam, Raphael; Ramos Atance, José Antonio
    Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson's disease (PD) and Huntington's disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like Δ9‐tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxidative injury is a prominent cytotoxic mechanism. This effect could be exerted, at least in part, through mechanisms independent of CB1 and CB2 receptors and involving the control of endogenous antioxidant defences. On the other hand, the activation of CB2 receptors leads to a slower progression of neurodegeneration in both disorders. This effect would be exerted by limiting the toxicity of microglial cells for neurons and, in particular, by reducing the generation of proinflammatory factors. It is important to mention that CB2 receptors have been identified in the healthy brain, mainly in glial elements and, to a lesser extent, in certain subpopulations of neurons, and that they are dramatically up‐regulated in response to damaging stimuli, which supports the idea that the cannabinoid system behaves as an endogenous neuroprotective system. This CB2 receptor up‐regulation has been found in many neurodegenerative disorders including HD and PD, which supports the beneficial effects found for CB2 receptor agonists in both disorders. In conclusion, the evidence reported so far supports that those cannabinoids having antioxidant properties and/or capability to activate CB2receptors may represent promising therapeutic agents in HD and PD, thus deserving a prompt clinical evaluation.
  • Item
    Prospects for cannabinoid therapies in basal ganglia disorders
    (British Journal of Pharmacology, 2011) Moreno‐Martet, Miguel; Palomo‐Garo, Cristina; Valdeolivas, Sara; Guaza, Carmen; Romero, Julián; Mechoulam, Raphael; Gómez Cañas, María; Fernández Ruiz, José Javier; Rodríguez Cueto, Carmen Aurora; Guzmán Pastor, Manuel; Ramos Atance, José Antonio
    Cannabinoids are promising medicines to slow down disease progression in neurodegenerative disorders including Parkinson's disease (PD) and Huntington's disease (HD), two of the most important disorders affecting the basal ganglia. Two pharmacological profiles have been proposed for cannabinoids being effective in these disorders. On the one hand, cannabinoids like Δ9-tetrahydrocannabinol or cannabidiol protect nigral or striatal neurons in experimental models of both disorders, in which oxidative injury is a prominent cytotoxic mechanism. This effect could be exerted, at least in part, through mechanisms independent of CB1 and CB2 receptors and involving the control of endogenous antioxidant defences. On the other hand, the activation of CB2 receptors leads to a slower progression of neurodegeneration in both disorders. This effect would be exerted by limiting the toxicity of microglial cells for neurons and, in particular, by reducing the generation of proinflammatory factors. It is important to mention that CB2 receptors have been identified in the healthy brain, mainly in glial elements and, to a lesser extent, in certain subpopulations of neurons, and that they are dramatically up-regulated in response to damaging stimuli, which supports the idea that the cannabinoid system behaves as an endogenous neuroprotective system. This CB2 receptor up-regulation has been found in many neurodegenerative disorders including HD and PD, which supports the beneficial effects found for CB2 receptor agonists in both disorders. In conclusion, the evidence reported so far supports that those cannabinoids having antioxidant properties and/or capability to activate CB2 receptors may represent promising therapeutic agents in HD and PD, thus deserving a prompt clinical evaluation.
  • Item
    Altered striatal endocannabinoid signaling in a transgenic mouse model of spinocerebellar ataxia type-3
    (PLOS one, 2017) Hernández-Gálvez, Mariluz; Hillard, Cecilia J.; Maciel, Patricia; Valdeolivas, Sara; Rodríguez Cueto, Carmen Aurora; Gómez Ruiz, María Sagrario; Fernández Ruiz, José Javier; Ramos Atance, José Antonio; David R Borchelt
    Spinocerebellar ataxia type-3 (SCA-3) is the most prevalent autosomal dominant inherited ataxia. We recently found that the endocannabinoid system is altered in the post-mortem cerebellum of SCA-3 patients, and similar results were also found in the cerebellar and brainstem nuclei of a SCA-3 transgenic mouse model. Given that the neuropathology of SCA-3 is not restricted to these two brain regions but rather, it is also evident in other structures (e.g., the basal ganglia), we studied the possible changes to endocannabinoid signaling in the striatum of these transgenic mice. SCA-3 mutant mice suffer defects in motor coordination, balance and they have an abnormal gait, reflecting a cerebellar/brainstem neuropathology. However, they also show dystonia-like behavior (limb clasping) that may be related to the malfunction/deterioration of specific neurons in the striatum. Indeed, we found a loss of striatal projecting neurons in SCA-3 mutant mice, accompanied by a reduction in glial glutamate transporters that could potentially aggravate excitotoxic damage. In terms of endocannabinoid signaling, no changes in CB2 receptors were evident, yet an important reduction in CB1 receptors was detected by qPCR and immunostaining. The reduction in CB1 receptors was presumed to occur in striatal afferent and efferent neurons, also potentially aggravating excitotoxicity. We also measured the endocannabinoid lipids in the striatum and despite a marked increase in the FAAH enzyme in this area, no overall changes in these lipids were found. Collectively, these studies confirm that the striatal endocannabinoid system is altered in SCA-3 mutant mice, adding to the equivalent changes found in other strongly affected CNS structures in this type of ataxia (i.e.: the cerebellum and brainstem). These data open the way to search for drugs that might correct these changes.
  • Item
    Changes in CB1 and CB2 receptors in the post‐mortem cerebellum of humans affected by spinocerebellar ataxias
    (British Journal of Pharmacology, 2014) Benito, Cristina; Romero, Julián; Hernández‐Gálvez, Mariluz; Rodríguez Cueto, Carmen Aurora; Fernández Ruiz, José Javier; Gómez Ruiz, María Sagrario
    Background and Purpose: Spinocerebellar ataxias are a family of chronic progressive neurodegenerative diseases, clinically and genetically heterogeneous, characterized by loss of balance and motor coordination due to degeneration of the cerebellum and its afferent and efferent connections. Unlike other motor disorders, the possible role of changes in the endocannabinoid system in the pathogenesis of SCAs has not been investigated. Experimental Approach: The status of cannabinoid receptor type 1 CB1 and cannabinoid receptor type 2 (CB2)) receptors in the post‐mortem cerebellum of SCA patients and controls was investigated using immunohistochemical procedures. Key results: Immunoreactivity for the CB1 receptor, and also for the CB2 receptor, was found in the granular layer, Purkinje cells, neurons of the dentate nucleus and areas of white matter in the cerebellum of SCA patients at levels notably higher than controls. Double-labelling procedures demonstrated co-localization of CB1 and, in particular, CB2 receptors with calbindin, supporting the presence of these receptors in Purkinje neurons. Both receptors also co-localized with Iba-1 and glial fibrillary acidic protein in the granular layer and white matter areas, indicating that they are present in microglia and astrocytes respectively. Conclusions and implications: Our results demonstrate that CB1 and CB2 receptor levels are significantly altered in the cerebellum of SCA patients. Their identification in Purkinje neurons, which are the main cells affected in SCAs, as well as the changes they experienced, suggest that alterations in endocannabinoid receptors may be related to the pathogenesis of SCAs. Therefore, the endocannabinoid system could provide potential therapeutic targets for the treatment of SCAs and its progression.
  • Item
    New pyridazinone-4-carboxamides as new cannabinoid receptor type-2 inverse agonists: Synthesis, pharmacological data and molecular docking
    (European Journal Medicinal Chemistry, 2017) Ragusa, Giulio; Morales, Paula; Pazos, María R.; Asproni, Battistina; Cichero, Elena; Fossa, Paola; Pinna, Gerard A.; Jagerovic, Nadine; Murineddu, Gabriele; Gómez Cañas, María; Rodríguez Cueto, Carmen Aurora; Fernández Ruiz, José Javier
    In the last few years, cannabinoid type-2 receptor (CB2R) selective ligands have shown a great potential as novel therapeutic drugs in several diseases. With the aim of discovering new selective cannabinoid ligands, a series of pyridazinone-4-carboxamides was designed and synthesized, and the new derivatives tested for their affinity toward the hCB1R and hCB2R. The 6-(4-chloro-3-methylphenyl)-2-(4-fluorobenzyl)-N-(cis-4-methylcyclohexyl)-3-oxo-2,3-dihydropyridazine-4-carboxamide (9) displayed high CB2-affinity (KiCB2 = 2.0 ± 0.81 nM) and a notable selectivity (KiCB1/KiCB2 > 2000). In addition, 9 and other active new synthesized entities have demonstrated to behave as CB2R inverse agonists in [35S]-GTPγS binding assay. ADME predictions of the newly synthesized CB2R ligands suggest a favourable pharmacokinetic profile. Docking studies disclosed the specific pattern of interactions of these derivatives. Our results support that pyridazinone-4-carboxamides represent a new promising scaffold for the development of potent and selective CB2R ligands.
  • Item
    Endocannabinoid-Hydrolysing Enzymes in the Post-Mortem Cerebellum of Humans Affected by Hereditary Autosomal Dominant Ataxias
    (Pathobiology, 2014) Romero, Julián; Hernández-Gálvez, Mariluz; Rodríguez Cueto, Carmen Aurora; Fernández Ruiz, José Javier; Benito Villalvilla, Cristina; Gómez Ruiz, María Sagrario
    Objectives: Spinocerebellar ataxias (SCAs) are characterized by a loss of balance and motor coordination due to degeneration of the cerebellum and its afferent and efferent connections. We recently found important changes in cannabinoid CB1 and CB2 receptors in the post-mortem cerebellum of patients affected by different SCAs. Methods: We wanted to further explore this issue by analysing the two major endocannabinoid-hydrolysing enzymes, fatty acid amide hydrolase (FAAH) and monoacyl glycerol lipase (MAGL), in the post-mortem cerebellum of SCA patients and control subjects. Results: Immunoreactivity for the FAAH and MAGL enzymes was found in the granular layer, in Purkinje cells, in neurons of the dentate nucleus and in areas of white matter in the cerebellum of patients at levels frequently notably higher than those in control subjects. Using double-labelling procedures, we found co-localization of FAAH and MAGL with calbindin, supporting the presence of these enzymes in Purkinje neurons. Conclusions: Degradative endocannabinoid enzymes are significantly increased in the cerebellum of SCA patients, which would presumably lead to reduced endocannabinoid levels. The identification of these enzymes in Purkinje neurons suggests a relationship with the pathogenesis of SCAs and suggests that the endocannabinoid system could provide potential therapeutic targets for the treatment of disease progression in SCAs.