New pyridazinone-4-carboxamides as new cannabinoid receptor type-2 inverse agonists: Synthesis, pharmacological data and molecular docking
Loading...
Official URL
Full text at PDC
Publication date
2017
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citation
Ragusa G, Gómez-Cañas M, Morales P, Rodríguez-Cueto C, Pazos MR, Asproni B, Cichero E, Fossa P, Pinna GA, Jagerovic N, Fernández-Ruiz J, Murineddu G. New pyridazinone-4-carboxamides as new cannabinoid receptor type-2 inverse agonists: Synthesis, pharmacological data and molecular docking. Eur J Med Chem. 2017 Feb 15;127:398-412. doi: 10.1016/j.ejmech.2017.01.002. Epub 2017 Jan 4. PMID: 28088085.
Abstract
In the last few years, cannabinoid type-2 receptor (CB2R) selective ligands have shown a great potential as novel therapeutic drugs in several diseases. With the aim of discovering new selective cannabinoid ligands, a series of pyridazinone-4-carboxamides was designed and synthesized, and the new derivatives tested for their affinity toward the hCB1R and hCB2R. The 6-(4-chloro-3-methylphenyl)-2-(4-fluorobenzyl)-N-(cis-4-methylcyclohexyl)-3-oxo-2,3-dihydropyridazine-4-carboxamide (9) displayed high CB2-affinity (KiCB2 = 2.0 ± 0.81 nM) and a notable selectivity (KiCB1/KiCB2 > 2000). In addition, 9 and other active new synthesized entities have demonstrated to behave as CB2R inverse agonists in [35S]-GTPγS binding assay. ADME predictions of the newly synthesized CB2R ligands suggest a favourable pharmacokinetic profile. Docking studies disclosed the specific pattern of interactions of these derivatives. Our results support that pyridazinone-4-carboxamides represent a new promising scaffold for the development of potent and selective CB2R ligands.