Person:
Losada Doval, Teresa

Loading...
Profile Picture
First Name
Teresa
Last Name
Losada Doval
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 22
  • Item
    Impacts of the Atlantic Equatorial Mode in a warmer climate
    (Climate dynamics, 2015) Mohino Harris, Elsa; Losada Doval, Teresa
    The main source of sea surface temperature (SST) variability in the Tropical Atlantic at interannual time scales is the Equatorial Mode or Atlantic El Niño. It has been shown to affect the adjacent continents and also remote regions, leading to a weakened Indian Monsoon and promoting La Niña-type anomalies over the Pacific. However, its effects in a warmer climate are unknown. This work analyses the impact of the Equatorial Mode at the end of the twenty first century by means of sensitivity experiments with an atmosphere general circulation model. The prescribed boundary conditions for the future climate are based on the outputs from models participating in the coupled model intercomparison project-phase V. Our results suggest that even if the characteristics of the Equatorial Mode at the end of the twenty first century remained equal to those of the twentieth century, there will be an eastward shift of the main rainfall positive anomalies in the Tropical Atlantic and a weakening of the negative rainfall anomalies over the Asian monsoon due to the change in climatological SSTs. We also show that extratropical surface temperature anomalies over land related to the mode will change in regions like Southwestern Europe, East Australia, Asia or North America due to the eastward shift of the sea level pressure systems and related surface winds.
  • Item
    Tropical Atlantic mixed layer buoyancy seasonality: atmospheric and oceanic physical processes contributions
    (Atmosphere, 2020) Camara, Ibrahima; Mignot, Juliette; Kolodziejczyk, Nicolas; Losada Doval, Teresa; Lazar, Alban
    This study investigates the physical processes controlling the mixed layer buoyancy using a regional configuration of an ocean general circulation model. Processes are quantified by using a linearized equation of state, a mixed-layer heat, and a salt budget. Model results correctly reproduce the observed seasonal near-surface density tendencies. The results indicate that the heat flux is located poleward of 10◦ of latitude, which is at least three times greater than the freshwater flux that mainly controls mixed layer buoyancy. During boreal spring-summer of each hemisphere, the freshwater flux partly compensates the heat flux in terms of buoyancy loss while, during the fall-winter, they act together. Under the seasonal march of the Inter-tropical Convergence Zone and in coastal areas affected by the river, the contribution of ocean processes on the upper density becomes important. Along the north Brazilian coast and the Gulf of Guinea, horizontal and vertical processes involving salinity are the main contributors to an upper water change with a contribution of at least twice as much the temperature. At the equator and along the Senegal-Mauritanian coast, vertical processes are the major oceanic contributors. This is mainly due to the vertical gradient of temperature at the mixed layer base in the equator while the salinity one dominates along the Senegal-Mauritania coast.
  • Item
    Impact of climate change on solar irradiation and variability over the Iberian Peninsula using regional climate models
    (International journal of climatology, 2019) Gil, V.; Gaertner, M.A.; Gutiérrez, C.; Losada Doval, Teresa
    As solar energy will be an increasingly important renewable energy source in the future years, the study of how climate change affects both temporal and spatial variability is very important. In this paper, we study future changes of the solar radiation resource in the Iberian Peninsula (IP) through a set of simulations from ESCENA project until mid-century. The evaluation of the simulations against observations indicates contrasting biases for the different regional climate models (RCMs) in terms of solar irradiation amount and its interannual variability. We propose a diagnostic for the quality of solar energy resource, in which the gridpoints are classified in four categories depending on the combination of solar irradiation amount and variability. The observed large percentage of points in the optimal category (high irradiation/low variability) in the IP is captured by the RCMs in general terms. The analysis of scenarios indicates a future increase in solar irradiation, although not all scenarios agree in the geographical distribution of this increase. In most projections, a shift is projected from the category with optimal resource quality towards the category with high irradiation/high variability, pointing to a certain quality loss in the solar resource. This result is not general, as a few scenarios show an opposite result. The exceptions are not linked to a particular GCM or emissions scenario. Finally, results from a first approximation to the issue of the ability of solar energy to cover power demand peaks in summer show important differences between regions of the IP. The spatially-averaged correlation of solar irradiation and summer surface temperatures for the whole IP is rather high, which is a positive result as the strong interconnections of the power grid within the IP could allow a distribution of solar power surpluses in certain regions for such high-temperature episodes.
  • Item
    Relationships among Intermodel Spread and Biases in Tropical Atlantic Sea Surface Temperatures
    (Journal of Climate, 2019) Mohino Harris, Elsa; Rodríguez De Fonseca, María Belén; Mechoso, C. Roberto; Losada Doval, Teresa; Polo Sánchez, Irene
    State-of-the-art general circulation models show important systematic errors in their simulation of sea surface temperatures (SST), especially in the tropical Atlantic. In this work the spread in the simulation of climatological SST in the tropical Atlantic by 24 CMIP5 models is examined, and its relationship with the mean systematic biases in the region is explored. The modes of intermodel variability are estimated by applying principal component (PC) analysis to the SSTs in the region 70ºW–20ºE, 20ºS–20ºN. The intermodel variability is approximately explained by the first three modes. The first mode is related to warmer SSTs in the basin, shows worldwide connections with same-signed loads over most of the tropics, and is connected with lower low cloud cover over the eastern parts of the subtropical oceans. The second mode is restricted to the Atlantic, where it shows negative and positive loads to the north and south of the equator, respectively, and is connected to a too weak Atlantic meridional overturning circulation (AMOC). The third mode is related to the double intertropical convergence zone bias in the Pacific and to an interhemispheric asymmetry in the net radiation at the top of the atmosphere. The structure of the second mode is closer to the mean bias than that of the others in the tropical Atlantic, suggesting that model difficulties with the AMOC contribute to the regional biases. State-of-the-art general circulation models show important systematic errors in their simulation of sea surface tem- peratures (SST), especially in the tropical Atlantic. In this work the spread in the simulation of climatological SST in the tropical Atlantic by 24 CMIP5 models is examined, and its relationship with the mean systematic biases in the region is explored. The modes of intermodel variability are estimated by applying principal component (PC) analysis to the SSTs in the region 708W–208E, 208S–208N. The intermodel variability is approximately explained by the first three modes. The first mode is related to warmer SSTs in the basin, shows worldwide connections with same-signed loads over most of the tropics, and is connected with lower low cloud cover over the eastern parts of the subtropical oceans. The second mode is restricted to the Atlantic, where it shows negative and positive loads to the north and south of the equator, respectively, and is connected to a too weak Atlantic meridional overturning circulation (AMOC). The third mode is related to the double intertropical convergence zone bias in the Pacific and to an interhemispheric asymmetry in the net radiation at the top of the atmosphere. The structure of the second mode is closer to the mean bias than that of the others in the tropical Atlantic, suggesting that model difficulties with the AMOC contribute to the regional biases.
  • Item
    Extratropical-tropical interaction model intercomparison project (Etin-Mip): protocol and initial results
    (Bulletin of the american meteorological society, 2019) Losada Doval, Teresa
    This article introduces the Extratropical-Tropical Interaction Model Intercomparison Project (ETIN-MIP), where a set of fully coupled model experiments are designed to examine the sources of longstanding tropical precipitation biases in climate models. In particular, we reduce insolation over three targeted latitudinal bands of persistent model biases: the southern extratropics, the southern tropics, and the northern extratropics. To address the effect of regional energy bias corrections on the mean distribution of tropical precipitation, such as the double intertropical convergence zone problem, we evaluate the quasi-equilibrium response of the climate system corresponding to a 50-yr period after the 100 years of prescribed energy perturbation. Initial results show that, despite a large intermodel spread in each perturbation experiment due to differences in ocean heat uptake response and climate feedbacks across models, the southern tropics is most efficient at driving a meridional shift of tropical precipitation. In contrast, the extratropical energy perturbations are effectively damped by anomalous heat uptake over the subpolar oceans, thereby inducing a smaller meridional shift of tropical precipitation compared with the tropical energy perturbations. The ETIN-MIP experiments allow us to investigate the global implications of regional energy bias corrections, providing a route to guide the practice of model development, with implications for understanding dynamical responses to anthropogenic climate change and geoengineering.
  • Item
    Tropical atmospheric response of Atlantic Niños to changes in the ocean background state
    (2023) Svendsen, Lea; Rodríguez De Fonseca, María Belén; Mohino Harris, Elsa; Crespo, Lander; Losada Doval, Teresa
    Since the 1970s, Atlantic Ninos during boreal summer have been linked to Pacific La Ninas the following winter. Earlier studies have explained the appearance of the Atlantic-Pacific teleconnection with changing Atlantic Nino configurations. Here we find that the non-stationarity of this teleconnection can also be explained by changes in the ocean background state, without changing the Atlantic Nino configuration. Experiments with different atmospheric general circulation models are performed where the same Atlantic Nino pattern is prescribed to different global ocean background states. The 1975-1985 global mean sea surface temperature forces a Walker Circulation response and low-level convergence over the Maritime Continent, increasing the chance of triggering a La Nina-like event in the Pacific. These results suggest that ENSO-predictions could be improved in certain periods by considering tropical Atlantic variability. The Atlantic Nino is the main climate variability phenomenon in the equatorial Atlantic and has a strong influence on local and remote climate. Since the 1970s, warm Atlantic Nino events in June-August have been linked to cool La Nina events developing in the equatorial Pacific the following December-February. The appearance of this Atlantic-Pacific link has been explained by changes in the temperature pattern of Atlantic Ninos but, so far, no study has analyzed the role of mean state changes. In this study we demonstrate the contribution of changes in the mean background surface temperatures of the global oceans to the appearance of this Atlantic-Pacific link. These results imply that under certain global ocean background conditions, we should use information about the Atlantic Nino to improve seasonal forecasts of El Nino and La Nina events. An Atlantic Nino in summer can produce atmospheric conditions of a La Nina-like event in the Pacific under certain ocean background statesThe ocean background state is of similar importance as the Atlantic Nino pattern for modifying the Atlantic Nino-Pacific teleconnectionAn Atlantic Nino intensifies easterly wind anomalies over the western equatorial Pacific when the Pacific has a warmer background state
  • Item
    Project number: PIMCD244/23-24
    Cambiando el rol del profesorado en el aula de transmisor a facilitador
    (2024) De La Cámara Illescas, Álvaro; Calvo Fernández, Natalia; Ábalos Álvarez, Marta; Durán Montejano, Luis; García Herrera, Ricardo Francisco; González Rouco, Jesús Fidel; Losada Doval, Teresa; Montoya Redondo, María Luisa; Negredo Moreno, Ana María; Pavón Carrasco, Francisco Javier; Polo Sánchez, Irene; Rodríguez De Fonseca, María Belén; Sastre Marugán, Mariano; Yagüe Anguis, Carlos; Zurita Gotor, Pablo; De La Cámara Illescas, Álvaro
    Este proyecto propone un cambio del rol del docente en el aula de transmisor a facilitador. Para ello, se apuesta por implantar metodologías que favorezcan el aprendizaje cooperativo en el aula y potencien el desarrollo de competencias transversales.
  • Item
    A shift in the wind regime of the southern end of the Canary upwelling system at the turn of the 20th century
    (Journal of geophysical research-oceans, 2021) Gallego, D.; García Herrera, Ricardo Francisco; Losada Doval, Teresa; Mohino Harris, Elsa; Rodríguez De Fonseca, María Belén
    In this study, we make use of historical wind direction observations to assemble an instrumental upwelling index (DUI) at the southern end of the Canary Current Upwelling System. The DUI covers the period between 1825 and 2014 and, unlike other upwelling indices, it does not rely neither in wind speed nor in reanalyzed data. In this sense, the DUI can be regarded as an instrumental index. Additionally, it avoids the suspected bias toward increasing wind speed of historical wind observations documented in previous research. Our results indicate that the frequency of the alongshore winds at the west coast of Africa between 10°N and 20°N measured by the DUI is significantly related with the wind stress and therefore the upwelling intensity in this region. The DUI presents a significant variability both at interannual and decadal timescales. We have not found any significant trend for the 20th century. However, when the entire length of the series is considered, a large shift toward more frequent alongshore winds is evidenced as a result of several decade-long fluctuations which took place between the late 19th century and the beginning of the 20th century. This fact would imply that a significant change in the upwelling intensity at the southern end of the Canary Current Upwelling System should have occurred at the turn of the 20th century.
  • Item
    Changes in interannual tropical Atlantic-Pacific basin interactions modulated by a South Atlantic cooling
    (Journal of climate, 2022) Losada Doval, Teresa; Rodríguez De Fonseca, María Belén; Mechoso, Roberto; Mohino Harris, Elsa; Castaño-Tierno, Antonio
    Although tropical interbasin interactions at interannual time scales are presently receiving much attention, their controlling factors and variations on longer time scales are under debate. Tropical convection plays a crucial role in the occurrence and nonstationarity of them. In this paper, we investigate the dependence of interannual tropical AtlanticPacific basin interactions on convection-related features of the tropical oceans’ climatology, especially the ITCZ position. Wecontrast a CGCM control simulation with an experiment in which tropical convection is modified by an artificial perturbation outside the tropics that reduces the incident shortwave radiation in a region of the South Atlantic. Based on previous work, this modification is expected to shift in latitude the climatological position of the simulated ITCZ. The experiment shows altered Walker circulations, stronger interannual variability over the tropical oceans, a westward extension of the Atlantic Ni˜no pattern and of convection, and shallower thermocline in the Pacific, making the basin more sensitive to both local and remote perturbations. As a consequence, the experiment shows enhanced interannual Atlantic–Pacificbasin interactions at the equator, and weaker teleconnections between the north tropical Atlantic and the equatorial Pacific. The latter seems to occur because the impact of the warm Atlantic SST anomalies is offset by the presence of warm SST anomalies in El Ni˜no region. Despite the uncertainties raised because the simulations are relatively short, we conclude that this work presents a potential explanation for the long-term changes in the tropical basin interactions and offers a novel and useful methodology for their analysis.
  • Item
    Project number: 151
    Meteolab como herramienta educativa de Meteorología en el Aula
    (2021) Rodríguez De Fonseca, María Belén; Ábalos Álvarez, Marta; Alvarez Solas, Jorge; Ayarzagüena Porras, Blanca; Benito Barca, Samuel; Calvo Fernández, Natalia; de la Cámara Illescas, Alvaro; Durán Montejano, Luis; García Herrena, Ricardo; Garrido Pérez, José Manuel; Gómara Cardalliaguet, Iñigo; Losada Doval, Teresa; Mohino Harris, Elsa; Montoya Redondo, Marisa Luisa; Ordoñez García, Carlos; Polo Sánchez, Irene; Robinson, Alexander James; Sastre Marugán, Mariano; Serrano Mendoza, Encarnación; Yagüe Anguis, Carlos; Zurita Gotor, Pablo; García Burgos, Marina; González Alemán, Juan Jesús; González Barras, Rosa María; González Rouco, Jesús Fidel; Martín Gómez, Verónica; Maqueda Burgos, Gregorio
    El Presente proyecto es una continuación de proyectos anteriores dentro de la plataforma de divulgación Meteolab. Meteolab es un proyecto de divulgación de Meteorología y Clima que tiene su origen en 2002, cuando se comenzaron a diseñar experimentos de bajo coste con materiales caseros para la Semana de la Ciencia de la Comunidad de Madrid (CAM). Con los años, se generó un conocimiento que se materializó en 2010 con la concesión de un Proyecto de Innovación Educativa (PIE) financiado por la Universidad Complutense de Madrid (UCM), dirigido por Belén Rodríguez de Fonseca. Gracias a este primer proyecto en el que trabajaron muchos profesores y alumnos de ciencias de la atmósfera, se gestó un portal web (meteolab.fis.ucm.es) en el que los experimentos se explicaban y se grababan para impulsar su difusión. Más adelante, en un segundo proyecto de Innovación Educativa, dirigido por la profesora Maria Luisa Montoya, los contenidos fueron traducidos al inglés. En concreto, los experimentos que componen Meteolab tienen como principal objetivo entender los principios y variables que determinan el comportamiento de las masas de aire en la atmósfera y de agua en el océano. La idea consiste en visualizar con experimentos sencillos las leyes físicas que gobiernan la atmósfera y el océano: movimientos horizontales y verticales, cambios de estado, mezcla y equilibrio, así como la interacción entre componentes. Se persigue observar los procesos meteorológicos familiares, como son la formación de una nube, los tornados, la convección, la formación de borrascas o la lluvia, entendiendo los procesos físicos que los producen. Finalmente, Meteolab permite también visualizar fenómenos climáticos como el efecto invernadero, el fenómeno de El Niño, el deshielo del Ártico, la influencia de los volcanes en el clima o la subida del nivel del mar. Existe un catálogo de experimentos, la mayoría de los cuales pueden consultarse a través del portal meteolab.fis.ucm.es, encontrándose todos ellos físicamente localizados en el Laboratorio Elvira Zurita de la Facultad de Ciencias Físicas. Tras la experiencia acumulada durante los 18 años de existencia de Meteolab, en los que se han adecuado las explicaciones de los experimentos a distintos niveles de dificultad (infantil, primaria, secundaria, bachillerato y Universidad de mayores), se ha sugerido la idoneidad de adaptar los contenidos a los estudiantes del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Así, por ejemplo, cuando se explica la formación de una nube, se puede ir complicando el discurso dependiendo de los diferentes ciclos de la enseñanza. De esta manera, para un nivel de escuela primaria uno sólo tiene que explicar que el aire se enfría al ascender, y al enfriarse se forman gotas de agua que forman las nubes. Al llegar a secundaria, los estudiantes aprenden el concepto de presión atmosférica y la relación entre la temperatura, la presión y el volumen de una parcela de aire. Más adelante, en el Grado en Física, se estudia la tensión de vapor, la expansión adiabática y la existencia de núcleos de condensación. Finalmente, en el Máster en Meteorología se aprenden los distintos procesos de nucleación y tipos de nubes. Todos estos conceptos van complicando la explicación, por lo que un mismo experimento puede explicarse tanto en una escuela infantil como en una Universidad. Es por ello, que, aprovechando la plataforma de divulgación Meteolab, hemos decidido dar un paso adelante y adaptar y ampliar los contenidos de Meteolab, para así poder integrarlos en los currícula del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Con todo ello, los objetivos del presente proyecto han sido: -Implementar los experimentos de Meteolab en el Aula, tanto en las asignaturas de Grado como en las de Máster. -Adaptar los contenidos existentes del portal web Meteolab (meteolab.fis.ucm.es) a las asignaturas relacionadas con Meteorología del Grado en Física y del Máster en Meteorología y Geofísica, con el fin de visualizar procesos físicos que se explican en el aula. -Añadir a Meteolab nuevos contenidos en relación con la dinámica de la atmósfera y el cambio climático. -Evaluar la mejora de la comprensión por parte del alumnado de los procesos que tienen lugar principalmente en la atmósfera y el océano, y su relación con el clima y su variabilidad.