Extratropical-tropical interaction model intercomparison project (Etin-Mip): protocol and initial results

Loading...
Thumbnail Image
Full text at PDC
Publication date

2019

Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Meteorological Society
Citations
Google Scholar
Citation
Abstract
This article introduces the Extratropical-Tropical Interaction Model Intercomparison Project (ETIN-MIP), where a set of fully coupled model experiments are designed to examine the sources of longstanding tropical precipitation biases in climate models. In particular, we reduce insolation over three targeted latitudinal bands of persistent model biases: the southern extratropics, the southern tropics, and the northern extratropics. To address the effect of regional energy bias corrections on the mean distribution of tropical precipitation, such as the double intertropical convergence zone problem, we evaluate the quasi-equilibrium response of the climate system corresponding to a 50-yr period after the 100 years of prescribed energy perturbation. Initial results show that, despite a large intermodel spread in each perturbation experiment due to differences in ocean heat uptake response and climate feedbacks across models, the southern tropics is most efficient at driving a meridional shift of tropical precipitation. In contrast, the extratropical energy perturbations are effectively damped by anomalous heat uptake over the subpolar oceans, thereby inducing a smaller meridional shift of tropical precipitation compared with the tropical energy perturbations. The ETIN-MIP experiments allow us to investigate the global implications of regional energy bias corrections, providing a route to guide the practice of model development, with implications for understanding dynamical responses to anthropogenic climate change and geoengineering.
Research Projects
Organizational Units
Journal Issue
Description
© 2019 American Meteorological Society. Artículo firmado por 19 autores. SMK, HK, and JK were supported by National Research Foundation of Korea (2017K2A9A1A06056874). MH is currently supported by the Queensland Government and Meat and Livestock Australia Donor Co. (MDC) through the Northern Australia Climate Program (NACP). YTH was supported by Ministry of Science and Technology in Taiwan (108-2636- M-002-007 and 106-2923-M-002-007-MY2). ØH and GM are supported by the project HYPRE (243942) funded through the Research Council of Norway, and NorESM1- HAPPI supercomputing resources have been provided by NOTUR (nn9188k). TL was supported by the Spanish Project CGL2017-86415-R. ØS was supported by the Norwegian Research Council, Project 261821 (HappiEVA). SY was supported by research grants from the NSF (AGS-1419518) and NASA (NNX17AH21G). CESM1.2 model simulations were performed on Cheyenne (ark:/85065/d7wd3xhc) provided by the NCAR’s CISL, sponsored by the NSF.
Keywords
Collections