Person:
Losada Doval, Teresa

Loading...
Profile Picture
First Name
Teresa
Last Name
Losada Doval
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 5 of 5
  • Item
    Impact of climate change on solar irradiation and variability over the Iberian Peninsula using regional climate models
    (International journal of climatology, 2019) Gil, V.; Gaertner, M.A.; Gutiérrez, C.; Losada Doval, Teresa
    As solar energy will be an increasingly important renewable energy source in the future years, the study of how climate change affects both temporal and spatial variability is very important. In this paper, we study future changes of the solar radiation resource in the Iberian Peninsula (IP) through a set of simulations from ESCENA project until mid-century. The evaluation of the simulations against observations indicates contrasting biases for the different regional climate models (RCMs) in terms of solar irradiation amount and its interannual variability. We propose a diagnostic for the quality of solar energy resource, in which the gridpoints are classified in four categories depending on the combination of solar irradiation amount and variability. The observed large percentage of points in the optimal category (high irradiation/low variability) in the IP is captured by the RCMs in general terms. The analysis of scenarios indicates a future increase in solar irradiation, although not all scenarios agree in the geographical distribution of this increase. In most projections, a shift is projected from the category with optimal resource quality towards the category with high irradiation/high variability, pointing to a certain quality loss in the solar resource. This result is not general, as a few scenarios show an opposite result. The exceptions are not linked to a particular GCM or emissions scenario. Finally, results from a first approximation to the issue of the ability of solar energy to cover power demand peaks in summer show important differences between regions of the IP. The spatially-averaged correlation of solar irradiation and summer surface temperatures for the whole IP is rather high, which is a positive result as the strong interconnections of the power grid within the IP could allow a distribution of solar power surpluses in certain regions for such high-temperature episodes.
  • Item
    Extratropical-tropical interaction model intercomparison project (Etin-Mip): protocol and initial results
    (Bulletin of the american meteorological society, 2019) Losada Doval, Teresa
    This article introduces the Extratropical-Tropical Interaction Model Intercomparison Project (ETIN-MIP), where a set of fully coupled model experiments are designed to examine the sources of longstanding tropical precipitation biases in climate models. In particular, we reduce insolation over three targeted latitudinal bands of persistent model biases: the southern extratropics, the southern tropics, and the northern extratropics. To address the effect of regional energy bias corrections on the mean distribution of tropical precipitation, such as the double intertropical convergence zone problem, we evaluate the quasi-equilibrium response of the climate system corresponding to a 50-yr period after the 100 years of prescribed energy perturbation. Initial results show that, despite a large intermodel spread in each perturbation experiment due to differences in ocean heat uptake response and climate feedbacks across models, the southern tropics is most efficient at driving a meridional shift of tropical precipitation. In contrast, the extratropical energy perturbations are effectively damped by anomalous heat uptake over the subpolar oceans, thereby inducing a smaller meridional shift of tropical precipitation compared with the tropical energy perturbations. The ETIN-MIP experiments allow us to investigate the global implications of regional energy bias corrections, providing a route to guide the practice of model development, with implications for understanding dynamical responses to anthropogenic climate change and geoengineering.
  • Item
    Ocean dynamics shapes the structure and timing of Atlantic Equatorial Modes
    (Journal of geophysical research-oceans, 2019) Martín Rey, Marta; Polo Sánchez, Irene; Rodríguez De Fonseca, María Belén; Lazar, Alban; Losada Doval, Teresa
    A recent study has brought to light the co‐existence of two distinct Atlantic Equatorial Modes during negative phases of the Atlantic Multidecadal Variability: the Atlantic Niño and Horse‐Shoe (HS) mode. Nevertheless, the associated air‐sea interactions for HS mode have not been explored so far and the prevailing dynamic view of the Atlantic Niño has been questioned. Here, using a forced ocean model simulation, we find that for both modes, ocean dynamics is essential to explain the equatorial SST variations, while air‐sea fluxes control the off‐equatorial SST anomalies. Moreover, we demonstrate the key role played by ocean waves in shaping their distinct structure and timing. For the positive phase of both Atlantic Niño and HS, anomalous westerly winds trigger a set of equatorial downwelling Kelvin waves (KW) during spring‐summer. These dKWs deepen the thermocline, favouring the equatorial warming through vertical diffusion and horizontal advection. Remarkably, for the HS, an anomalous north‐equatorial wind stress curl excites an upwelling Rossby wave (RW), which propagates westward and is reflected at the western boundary becoming an equatorial upwelling KW. The uKW propagates to the east, activating the thermocline feedbacks responsible to cool the sea surface during summer months. This RW‐reflected mechanism acts as a negative feedback causing the early termination of the HS mode. Our results provide an improvement in the understanding of the TAV modes and emphasize the importance of ocean wave activity to modulate the equatorial SST variability. These findings could be very useful to improve the prediction of the Equatorial Modes.
  • Item
    Revisiting the CMIP5 Thermocline in the Equatorial Pacific and Atlantic Oceans
    (Geophysical Research Letters, 2018) Castaño Tierno, Antonio; Mohino Harris, Elsa; Rodríguez De Fonseca, María Belén; Losada Doval, Teresa
    The thermocline is defined as the ocean layer for which the vertical thermal gradient is maximum. In the equatorial ocean, observations led to the use of the 20 °C isotherm depth (z20) as an estimate of the thermocline. This study compares z20 against the physical thermocline in the equatorial Atlantic and Pacific Oceans, using Simple Ocean Data Assimilation reanalysis and fifth phase of the Coupled Model Intercomparison Project preindustrial control simulations. Our results show that z20 is systematically deeper and flatter than the thermocline and does not respond correctly to surface wind stress variations. It is also shown that the annual cycle of z20 is much weaker than that of the physical thermocline. This happens in both equatorial basins and indicates that z20 does not react to the same mechanisms as the thermocline. This could have important consequences in the assessment of air-sea coupling in current general circulation models and bias reduction strategies.
  • Item
    The tropical Atlantic observing system
    (Frontiers in Marine Science, 2019) Rodríguez De Fonseca, María Belén; Polo Sánchez, Irene; Losada Doval, Teresa; Mohino Harris, Elsa; López Parages, Jorge
    The tropical Atlantic is home to multiple coupled climate variations covering a wide range of timescales and impacting societally relevant phenomena such as continental rainfall, Atlantic hurricane activity, oceanic biological productivity, and atmospheric circulation in the equatorial Pacific. The tropical Atlantic also connects the southern and northern branches of the Atlantic meridional overturning circulation and receives freshwater input from some of the world’s largest rivers. To address these diverse, unique, and interconnected research challenges, a rich network of ocean observations has developed, building on the backbone of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA). This network has evolved naturally over time and out of necessity in order to address the most important outstanding scientific questions and to improve predictions of tropical Atlantic severe weather and global climate variability and change. The tropical Atlantic observing system is motivated by goals to understand and better predict phenomena such as tropical Atlantic interannual to decadal variability and climate change; multidecadal variability and its links to the meridional overturning circulation; air-sea fluxes of CO2 and their implications for the fate of anthropogenic CO2; the Amazon River plume and its interactions with biogeochemistry, vertical mixing, and hurricanes; the highly productive eastern boundary and equatorial upwelling systems; and oceanic oxygen minimum zones, their impacts on biogeochemical cycles and marine ecosystems, and their feedbacks to climate. Past success of the tropical Atlantic observing system is the result of an international commitment to sustained observations and scientific cooperation, a willingness to evolve with changing research and monitoring needs, and a desire to share data openly with the scientific community and operational centers. The observing system must continue to evolve in order to meet an expanding set of research priorities and operational challenges. This paper discusses the tropical Atlantic observing system, including emerging scientific questions that demand sustained ocean observations, the potential for further integration of the observing system, and the requirements for sustaining and enhancing the tropical Atlantic observing system.