Person:
López Torres, Bernardo

Loading...
Profile Picture
First Name
Bernardo
Last Name
López Torres
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Veterinaria
Department
Farmacología y Toxicología
Area
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Brown marine algae Gongolaria baccata extract protects Caco-2 cells from oxidative stress induced by tert-butyl hydroperoxide
    (Food and Chemical Toxicology, 2021) Martínez Caballero, María Aranzazu; Ares Lombán, Irma; Martínez Caballero, Marta; López Torres, Bernardo; Maximiliano Guerra, Jorge Enrique; Rodriguez, J.L; Martínez Larrañaga, María Rosa; Anadón Navarro, Arturo Ramón; Peteiro, C.; Rubiño, S; Hortos, M
    Gongolaria baccata (S.G. Gmelin) is marine brown seaweed mainly found on the coasts of the Baltic Sea south to the Mediterranean Sea, Canary Islands, Mauritania and Western Sahara. Herein, we report the cell viability and protective effects attributed to molecular mechanisms underlying antioxidant response to survive oxidative stress injuries. Caco-2 cells were submitted to oxidative stress by treatment with tert-butylhydroperoxide (tert-BOOH). The extract prevented cell damage and enhanced activity of antioxidant defenses (NQO1 and GST activities and GSH levels) reduced by treatment with tert-BOOH. The increases of MDA levels, the amount of intracellular ROS and caspase 3/7 activity induced by tert-BOOH were prevented when cells were treated with the G. baccata extract. Moreover, G. baccata extract caused up-regulation of GSTM2, Nrf2, and AKT1 gene expressions, as well as G. baccata extract reduced significantly Bax, BNIP3, APAF1, ERK1, JNK1, MAPK1, P38, P53, NFκB1, TNFα, IL-6, IL-1β and HO-1 gene expressions related to apoptosis, proinflammation and oxidative stress induced by tert-BOOH. These results suggest that G.baccata extract protected the cells against oxidative damage and inflammation; protective effects that could be linked to their bioactive constituents. Hence, this brown seaweed G. baccata extract could be used for the development of functional foods and/or nutraceuticals.
  • Item
    Toxicologic evidence of developmental neurotoxicity of type II pyrethroids cyfluthrin and alpha-cypermethrin in SH-SY5Y cells
    (Food and Chemical Toxicology, 2020) Martínez Caballero, María Aranzazu; López Torres, Bernardo; Rodriguez, J.L.; Martínez Caballero, Marta; Maximiliano Guerra, Jorge Enrique; Martínez Larrañaga, María Rosa; Anadón Navarro, Arturo Ramón; Ares Lombán, Irma
    We attempted to identify cellular mechanisms as an approach to screen chemicals for the potential to cause developmental neurotoxicity. We examine, in SH-SY5Y cells, whether apoptosis and oxidative stress via reactive oxygen species (ROS) generation, caspase 3/7 activation, gene expression (Bax, Bcl-2, Casp-3, BNIP3, p53 and Nrf2) alterations and necrosis by release of cytosolic adenylate kinase (AK), underlie direct effects of the pyrethroids cyfluthrin and alpha-cypermethrin. We also determined transcriptional alterations of genes (TUBB3, NEFL, NEFH, GAP43, CAMK2A, CAMK2B, WNT3A, WNT5A, WNT7A, SYN1 and PIK3C3) linked to neuronal development and maturation. Our results indicate that cyfluthrin and alpha-cypermethrin have the ability to elicit concentration-dependent increases in AK release, cellular ROS production, caspase 3/7 activity and gene expression of apoptosis and oxidative stress mediators. Both pyrethroids caused changes in mRNA expression of key target genes linked to neuronal development. These changes might reflect in a subsequent neuronal dysfunction. Our study shows that SH-SY5Y cell line is a valuable in vitro model for predicting development neurotoxicity. Our research provides evidence that cyfluthrin and alpha-cypermethrin have the potential to act as developmental neurotoxic compounds. Additional information is needed to improve the utility of this in vitro model and/or better understand its predictive capability.
  • Item
    Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways
    (Environment International, 2020) Martínez Caballero, María Aranzazu; Rodríguez, José Luis; López Torres, Bernardo; Martínez Caballero, Marta; Martínez Larrañaga, María Rosa; Maximiliano Guerra, Jorge Enrique; Anadón Navarro, Arturo Ramón; Ares Lombán, Irma
    Glyphosate-containing herbicides are the most used agrochemicals in the world. Their indiscriminate application raises some concerns regarding the possible health and environmental hazards. In this study, we investigated in human neuroblastoma cell line SH-SY5Y if oxidative stress, altered neurodevelopment and cell death pathways are involved in response to glyphosate and its metabolite aminomethylphosphonic acid (AMPA) exposures. MTT and LDH assays were carried out to assess the glyphosate and AMPA cytotoxicity. Lipid peroxides measured as malondialdehyde (MDA), nitric oxide (NO) and reactive oxygen species (ROS) production, and caspase-Glo 3/7 activity were evaluated. The neuroprotective role of melatonin (MEL), Trolox, N-acetylcysteine (NAC) and Sylibin against glyphosate- and AMPA-induced oxidative stress was examined. Glyphosate and AMPA effects on neuronal development related gene transcriptions, and gene expression profiling of cell death pathways by Real-Time PCR array were also investigated. Glyphosate (5 mM) and AMPA (10 mM) induced a significant increase in MDA levels, NO and ROS production and caspase 3/7 activity. Glyphosate exposure induced up-regulation of Wnt3a, Wnt5a, Wnt7a, CAMK2A, CAMK2B and down-regulation of GAP43 and TUBB3 mRNA expression involved in normal neural cell development. In relation to gene expression profiling of cell death pathways, of the 84 genes examined in cells a greater than 2-fold change was observed for APAF1, BAX, BCL2, CASP3, CASP7, CASP9, SYCP2, TNF, TP53, CTSB, NFκB1, PIK3C3, SNCA, SQSTMT, HSPBAP1 and KCNIPI mRNA expression for glyphosate and AMPA exposures. These gene expression data can help to define neurotoxic mechanisms of glyphosate and AMPA. Our results demonstrated that glyphosate and AMPA induced cytotoxic effects on neuronal development, oxidative stress and cell death via apoptotic, autophagy and necrotic pathways and confirmed that glyphosate environmental exposure becomes a concern. This study demonstrates that SH-SY5Y cell line could be considered an in vitro system for pesticide screening.