Person:
Alda Serrano, Javier

Loading...
Profile Picture
First Name
Javier
Last Name
Alda Serrano
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Óptica y Optometría
Department
Óptica
Area
Optica
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 4 of 4
  • Item
    Measurement limitations in knife-edge tomographic phase retrieval of focused IR laser beams
    (Optics Express, 2012) Silva López, Manuel; Rico García, José María; Alda Serrano, Javier
    An experimental setup to measure the three-dimensional phase-intensity distribution of an infrared laser beam in the focal region has been presented. It is based on the knife-edge method to perform a tomographic reconstruction and on a transport of intensity equation-based numerical method to obtain the propagating wavefront. This experimental approach allows us to characterize a focalized laser beam when the use of image or interferometer arrangements is not possible. Thus, we have recovered intensity and phase of an aberrated beam dominated by astigmatism. The phase evolution is fully consistent with that of the beam intensity along the optical axis. Moreover, this method is based on an expansion on both the irradiance and the phase information in a series of Zernike polynomials. We have described guidelines to choose a proper set of these polynomials depending on the experimental conditions and showed that, by abiding these criteria, numerical errors can be reduced.
  • Item
    Micromachined silicon lenses for terahertz applications
    (Infrared Physics & Technology, 2013) Bueno, Juan; López Camacho, Elena; Silva López, Manuel; Rico García, José María; Llombart, N; Alda Serrano, Javier; Costa-Krämer, José Luis
    Silicon microlenses are a very important tool for coupling terahertz (THz) radiation into antennas and detectors in integrated circuits. They can be used in a large array structures at this frequency range reducing considerably the crosstalk between the pixels. Drops of photoresist have been deposited and their shape transferred into the silicon by means of a Reactive Ion Etching (RIE) process. Large silicon lenses with a few mm diameter (between 1.5 and 4.5 mm) and hundreds of μm height (between 50 and 350 μm) have been fabricated. The surface of such lenses has been characterized using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM), resulting in a surface roughness of about ∼3 μm, good enough for any THz application. The beam profile at the focal plane of such lenses has been measured at a wavelength of 10.6 μm using a tomographic knife-edge technique and a CO2 laser.
  • Item
    Diffractive optical elements with square concentric rings of equal width
    (Microwave and Optical Technology Letters, 2010) Alda Serrano, Javier; Sánchez Brea, Luis Miguel; Salgado Remacha, Francisco Javier; Rico García, José María
    A diffractive optical element having equal-width concentric square rings is analyzed in this article. This constant width makes possible its realization using spatial light modulators or square pixels phase screens. It allows a simple analytical treatment, and the element is also simulated using the Rayleigh-Sommerfeld approach. An experimental verification of its performance has been compared with the simulated results.
  • Item
    Optimal phase distributions for polygonal Fresnel lenses
    (Proceedings of the Fourth European Conference on Antennas and Propagation, 2010) Alda Serrano, Javier; Salgado Remacha, Francisco Javier; Sánchez Brea, Luis Miguel; Rico García, José María; González, Francisco Javier
    Polygonal Fresnel zone plates can be configured in a variety of forms depending on the number of sides of the polygon and the number of phase steps used. This contribution deals with some specific polygonal designs that tessellate the plane: triangles, squares, and hexagons. The phase distribution is chosen as a continuous one to form a polygonal kinoform. The selected designs have been simulated and its behaviour compared. Although their performance is worse than the circular Fresnel plate, they may present some other advantages as the tessellation capability, and the possibility to fabricate them as extruded profiles.