Person:
García Jambrina, Pablo

Loading...
Profile Picture
First Name
Pablo
Last Name
García Jambrina
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Física
Area
Química Física
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 2 of 2
  • Item
    Li + HF and Li + HCl Reactions Revisited I: QCT Calculations and Simulation of Experimental Results
    (The journal of physical chemistry A, 2023) Menéndez Carbajosa, Alicia Marta; Garcia Para, Ernesto; Lara Garrido, Manuel; García Jambrina, Pablo; Aoiz Moleres, Francisco Javier
    The Li + HF and Li + HCl reactions share some common features. They have the same kinematics, relatively small barrier heights, bent transition states, and are both exothermic when the zero point energy is considered. Nevertheless, the pioneering crossed beam experiments by Lee and co-workers in the 80s (Becker et al., J. Chem. Phys. 1980, 73, 2833) revealed that the dynamics of the two reactions differ significantly, especially at low collision energies. In this work, we present theoretical simulations of their results in the laboratory frame (LAB), based on quasiclassical trajectories and obtained using accurate potential energy surfaces. The calculated LAB angular distributions and time-of-flight spectra agree well with the raw experimental data, although our simulations do not reproduce the experimentally derived center-of-mass (CM) differential cross section and velocity distributions. The latter were derived by forward convolution fitting under the questionable assumption that the CM recoil velocity and scattering angle distribution were uncoupled, while our results show that the coupling between them is relevant. Some important insights into the reaction mechanism discussed in the article by Becker et al. had not been contrasted with those that can be extracted from the theoretical results. Among them, the correlation between the angular momenta involved in the reactions has also been examined. Given the kinematics of both systems, the reagent orbital angular momentum, 𝓁𝑙, is almost completely transformed into the rotation of the product diatom, j′. However, contrary to the coplanar mechanism proposed in the original paper, we find that the initial and final relative orbital angular momenta are not necessarily parallel. Both reactions are found to be essentially direct, although about 15% of the LiFH complexes live longer than 200 fs.
  • Item
    The Role of Conserved Residues in the DEDDh Motif: the Proton-Transfer Mechanism of HIV-1 RNase H
    (ACS Catalysis, 2021) Dürr, Simon ; Bohuszewicz, Olga; Berta, Dénes; Suardíaz Delrío, Reynier; Jambrina, Pablo ; Peter, Christine; Shao, Yihan; Rosta, Edina; García Jambrina, Pablo
    RNase H is a prototypical example for two-metal-ion catalysis in enzymes. An RNase H activity cleaving the ribonucleic acid (RNA) backbone of a DNA/RNA hybrid is present not only in important drug targets, such as the HIV-1 reverse transcriptase, but also in many other nucleases, such as Homo sapiens (Hs) and Escherichia coli (Ec) RNase H or, notably, in enzymes that are part of the CRISPR gene editing molecular machinery. Despite its importance, the reaction mechanism uncovering the proton-transfer events is not yet understood. In particular, it is not known, which group is the proton donor for the leaving group. Moreover, several different proton acceptors were proposed, and the exact identity of the proton acceptor is also elusive. Here, we revisit the mechanism for RNAse H, whereby we find that the highly conserved Glu residue of the DDE motif acts as a proton donor via a mechanism further stabilized by the 2′O atom of the sugar. Additionally, we also describe an alternative proton-transfer mechanism via a conserved catalytic His residue to deprotonate the attacking water molecule. Furthermore, our quantum mechanics/molecular mechanics (QM/MM) calculations combining Hamiltonian replica exchange with a finite-temperature string method provide an accurate free-energy profile for the reaction catalyzed by the HIV-1 RNase H. Our reported pathway is consistent with kinetic data obtained for mutant HIV-1, Hs, and Ec RNase H, with the calculated pKa values of the DEDD residues and with crystallographic studies. The overall reaction barrier of ∼19 kcal mol–1, encountered in the phosphate-cleavage step, matches the slow experimental rate of ∼1–100 min–1. Additionally, using molecular dynamics (MD) calculations, we sample the recently identified binding site for a third transient divalent metal ion in the vicinity of the scissile phosphate in the product complex. Our results account for the experimental observation of a third metal ion facilitating product release in an Aquifex aeolicus RNase III crystal structure and the Bh RNase H in crystallo reaction. Taken together, we provide a molecular mechanism of the nuclease catalytic reaction that is likely common for the broad family of two-metal-ion catalytic phosphate-cleaving enzymes with a DDE motif.