Person:
Ayarzagüena Porras, Blanca

Loading...
Profile Picture
First Name
Blanca
Last Name
Ayarzagüena Porras
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 10 of 24
  • Item
    Project number: 151
    Meteolab como herramienta educativa de Meteorología en el Aula
    (2021) Rodriguez Fonseca, María Belén; Ábalos Álvarez, Marta; Alvarez Solas, Jorge; Ayarzagüena Porras, Blanca; Benito Barca, Samuel; Calvo Fernández, Natalia; de la Cámara Illescas, Alvaro; Durán Montejano, Luis; García Herrena, Ricardo; Garrido Pérez, José Manuel; Gómara Cardalliaguet, Iñigo; Losada Doval, Teresa; Mohino Harris, Elsa; Montoya Redondo, Marisa Luisa; Ordoñez García, Carlos; Polo Sánchez, Irene; Robinson, Alexander James; Sastre Marugán, Mariano; Serrano Mendoza, Encarnación; Yagüe Anguis, Carlos; Zurita Gotor, Pablo; García Burgos, Marina; González Alemán, Juan Jesús; González Barras, Rosa María; González Rouco, Jesús Fidel; Martín Gómez, Verónica; Maqueda Burgos, Gregorio
    El Presente proyecto es una continuación de proyectos anteriores dentro de la plataforma de divulgación Meteolab. Meteolab es un proyecto de divulgación de Meteorología y Clima que tiene su origen en 2002, cuando se comenzaron a diseñar experimentos de bajo coste con materiales caseros para la Semana de la Ciencia de la Comunidad de Madrid (CAM). Con los años, se generó un conocimiento que se materializó en 2010 con la concesión de un Proyecto de Innovación Educativa (PIE) financiado por la Universidad Complutense de Madrid (UCM), dirigido por Belén Rodríguez de Fonseca. Gracias a este primer proyecto en el que trabajaron muchos profesores y alumnos de ciencias de la atmósfera, se gestó un portal web (meteolab.fis.ucm.es) en el que los experimentos se explicaban y se grababan para impulsar su difusión. Más adelante, en un segundo proyecto de Innovación Educativa, dirigido por la profesora Maria Luisa Montoya, los contenidos fueron traducidos al inglés. En concreto, los experimentos que componen Meteolab tienen como principal objetivo entender los principios y variables que determinan el comportamiento de las masas de aire en la atmósfera y de agua en el océano. La idea consiste en visualizar con experimentos sencillos las leyes físicas que gobiernan la atmósfera y el océano: movimientos horizontales y verticales, cambios de estado, mezcla y equilibrio, así como la interacción entre componentes. Se persigue observar los procesos meteorológicos familiares, como son la formación de una nube, los tornados, la convección, la formación de borrascas o la lluvia, entendiendo los procesos físicos que los producen. Finalmente, Meteolab permite también visualizar fenómenos climáticos como el efecto invernadero, el fenómeno de El Niño, el deshielo del Ártico, la influencia de los volcanes en el clima o la subida del nivel del mar. Existe un catálogo de experimentos, la mayoría de los cuales pueden consultarse a través del portal meteolab.fis.ucm.es, encontrándose todos ellos físicamente localizados en el Laboratorio Elvira Zurita de la Facultad de Ciencias Físicas. Tras la experiencia acumulada durante los 18 años de existencia de Meteolab, en los que se han adecuado las explicaciones de los experimentos a distintos niveles de dificultad (infantil, primaria, secundaria, bachillerato y Universidad de mayores), se ha sugerido la idoneidad de adaptar los contenidos a los estudiantes del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Así, por ejemplo, cuando se explica la formación de una nube, se puede ir complicando el discurso dependiendo de los diferentes ciclos de la enseñanza. De esta manera, para un nivel de escuela primaria uno sólo tiene que explicar que el aire se enfría al ascender, y al enfriarse se forman gotas de agua que forman las nubes. Al llegar a secundaria, los estudiantes aprenden el concepto de presión atmosférica y la relación entre la temperatura, la presión y el volumen de una parcela de aire. Más adelante, en el Grado en Física, se estudia la tensión de vapor, la expansión adiabática y la existencia de núcleos de condensación. Finalmente, en el Máster en Meteorología se aprenden los distintos procesos de nucleación y tipos de nubes. Todos estos conceptos van complicando la explicación, por lo que un mismo experimento puede explicarse tanto en una escuela infantil como en una Universidad. Es por ello, que, aprovechando la plataforma de divulgación Meteolab, hemos decidido dar un paso adelante y adaptar y ampliar los contenidos de Meteolab, para así poder integrarlos en los currícula del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Con todo ello, los objetivos del presente proyecto han sido: -Implementar los experimentos de Meteolab en el Aula, tanto en las asignaturas de Grado como en las de Máster. -Adaptar los contenidos existentes del portal web Meteolab (meteolab.fis.ucm.es) a las asignaturas relacionadas con Meteorología del Grado en Física y del Máster en Meteorología y Geofísica, con el fin de visualizar procesos físicos que se explican en el aula. -Añadir a Meteolab nuevos contenidos en relación con la dinámica de la atmósfera y el cambio climático. -Evaluar la mejora de la comprensión por parte del alumnado de los procesos que tienen lugar principalmente en la atmósfera y el océano, y su relación con el clima y su variabilidad.
  • Item
    Intraseasonal effects of El Niño–Southern oscillation on North Atlantic climate
    (Journal of Climate, 2018) Ayarzagüena Porras, Blanca; Ineson, Sarah; Dunstone, Nick J.; Baldwin, Mark P.; Scaife, Adam A.
    It is well established that El Niño–Southern Oscillation (ENSO) impacts the North Atlantic–European (NAE) climate, with the strongest influence in winter. In late winter, the ENSO signal travels via both tropospheric and stratospheric pathways to the NAE sector and often projects onto the North Atlantic Oscillation. However, this signal does not strengthen gradually during winter, and some studies have suggested that the ENSO signal is different between early and late winter and that the teleconnections involved in the early winter subperiod are not well understood. In this study, we investigate the ENSO teleconnection to NAE in early winter (November–December) and characterize the possible mechanisms involved in that teleconnection. To do so, observations, reanalysis data and the output of different types of model simulations have been used. We show that the intraseasonal winter shift of the NAE response to ENSO is detected for both El Niño and La Niña and is significant in both observations and initialized predictions, but it is not reproduced by free-running Coupled Model Intercomparison Project phase 5 (CMIP5) models. The teleconnection is established through the troposphere in early winter and is related to ENSO effects over the Gulf of Mexico and Caribbean Sea that appear in rainfall and reach the NAE region. CMIP5 model biases in equatorial Pacific ENSO sea surface temperature patterns and strength appear to explain the lack of signal in the Gulf of Mexico and Caribbean Sea and, hence, their inability to reproduce the intraseasonal shift of the ENSO signal over Europe.
  • Item
    Future Arctic sea ice loss reduces severity of cold air outbreaks in midlatitudes
    (Geophysical Research Letters, 2016) Ayarzagüena Porras, Blanca; Screen, James A.
    The effects of Arctic sea ice loss on cold air outbreaks (CAOs) in midlatitudes remain unclear. Previous studies have defined CAOs relative to the present‐day climate, but changes in CAOs, defined in such a way, may reflect changes in mean climate and not in weather variability, and society is more sensitive to the latter. Here we revisit this topic but applying changing temperature thresholds relating to climate conditions of the time. CAOs do not change in frequency or duration in response to projected sea ice loss. However, they become less severe, mainly due to advection of warmed polar air, since the dynamics associated with the occurrence of CAOs are largely not affected. CAOs weaken even in midlatitude regions where the winter mean temperature decreases in response to Arctic sea ice loss. These results are robustly simulated by two atmospheric models prescribed with differing future sea ice states and in transient runs where external forcings are included.
  • Item
    The role of climate change and ozone recovery for the future timing of major stratospheric warmings
    (Geophysical Research Letters, 2013) Ayarzagüena Porras, Blanca; Langematz, Ulrike; Meul, Stefanie; Oberländer, Sophie; Abalichin, Janna; Kubin, Anne
    Future changes in the occurrence rates of major stratospheric warmings (MSWs) have recently been identified in chemistry‐climate model (CCM) simulations, but without reaching a consensus, potentially due to the competition of different forcings. We examine future variations in the occurrence rates of MSWs in transient and timeslice simulations of the ECHAM/MESSy atmospheric chemistry (EMAC) CCM, with a focus on the individual effect of different external factors. Although no statistically significant variation is found in the decadal‐mean frequency of MSWs, a shift of their timing toward midwinter is detected in the future. The strengthening of the polar vortex in early winter is explained by recovering ozone levels following the future decrease in ozone‐depleting substances. In midwinter, a stronger dynamical forcing associated with changes in tropical sea surface temperatures will lead to more MSWs, through a similar mechanism that explains the stratospheric response to El Niño‐Southern Oscillation (ENSO).
  • Item
    Monthly characterization of the tropospheric circulation over the euro-atlantic area in relation with the timing of stratospheric final warmings
    (Journal of Climate, 2009) Ayarzagüena Porras, Blanca; Serrano Mendoza, Encarnación
    In recent decades, there has been a growing interest in the study of a possible active role of the stratosphere on the tropospheric climate. However, most studies have focused on this connection in wintertime. This paper deals with the possible relationship between variations in the timing of stratospheric final warmings (SFWs, observed in springtime) and monthly averaged changes in the Euro-Atlantic climate. On the basis of the date on which the SFW occurs, two sets of years have been selected for the period of study (1958–2002): “early years” and “late years,” reflecting a very early or a very late breakup of the polar vortex. The statistical significance of the early-minus-late differences in the analyzed fields has been established by applying a nonparametric test based on a Monte Carlo–like technique. Using data from 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis (ERA-40), a dynamical study for March and April has shown important differences between both sets of years in stationary waves, especially ultralong ones (waves with k = 1 in March and k = 2 in April). Furthermore, the interannual variations in the stratospheric zonal wind seem to propagate downward as the spring progresses, in such a way that they reach tropospheric levels in April. Relevant differences between “early” and “late” years have been found in tropospheric monthly fields in the Euro-Atlantic area (geopotential, zonal wind, and storm-track activity), being at their most extensive in April.
  • Item
    A multi‑parametric perspective of the North Atlantic eddy‑driven jet
    (Climate Dynamics, 2022) Barriopedro Cepero, David; Ayarzagüena Porras, Blanca; García-Burgos, Marina; García Herrera, Ricardo Francisco
    The North Atlantic eddy-driven jet (EDJ) is an essential component of the Euro-Atlantic atmospheric circulation. It has been typically described in terms of latitude and intensity but this is not enough to fully characterize its variability and complex EDJ configurations. Here, we present a set of daily parameters of the EDJ based on low-tropospheric zonal wind data for the 1948–2020 period. They describe the intensity, sharpness, location, edges, tilt and other zonal asymmetries of the EDJ, therefore dissecting its structure beyond the latitudinal regimes. This allows for assessments of specific EDJ aspects and a multi-parametric treatment of EDJ configurations in a manageable way. Overall, variations in EDJ parameters reflect distinctive patterns of eddy forcing and wave breaking, with anticyclonic eddies playing a major role in shaping the EDJ structure. A multimodal behavior of the EDJ is only detected in latitude, which largely influences the longitudinal position of the EDJ. Other aspects of the EDJ are less constrained by the latitude and display a variety of configurations. Four multi-parametric states (northern, central, tilted and split EDJs) provide a satisfactory description of recurrent patterns of the EDJ. They participate in meridional migrations of the EDJ, but yield less dramatic transitions than viewed from the latitudinal perspective. Finally, the EDJ parameters help to better understand the EDJ influence on European climate. In many regions, latitude and intensity contain limited information on near-surface anomalies, and their signals can be masked by the additional effect of other EDJ parameters.
  • Item
    Abrupt and persistent atmospheric circulation changes in the North Atlantic under La Niña conditions
    (Weather and Climate Extremes, 2023) García Burgos, Marina; Gómara Cardalliaguet, Íñigo; Rodríguez De Fonseca, María Belén; González Alemán, Juan Jesús; Zurita Gotor, Pablo; Ayarzagüena Porras, Blanca
    Several recent studies have linked the exceptional North Atlantic and Eurasian atmospheric evolution during late February and March 2018 to the Sudden Stratospheric Warming (SSW) that took place a few weeks earlier. February 2018 was characterized by an abrupt transition from the positive to the negative phase of the North Atlantic Oscillation (NAO) and a subsequent persistence of the negative NAO for several weeks. This paper investigates the contribution of atmospheric and oceanic phenomena to both the 2018 event and a set of 19 identified analogues (including the former) for the period 1959–2022. Evidence is given that La Niña conditions in the tropical Pacific and upstream North Atlantic cyclones play an important role as a trigger for these events. Ensuing two-way tropospheric-stratospheric coupling and eddy feedbacks provide extended-range persistence for negative NAO conditions. These results may help improve the prediction of such exceptional events.
  • Item
    Polar night jet characterization through artificial intelligence
    (Computers & Geosciences, 2022) Rodríguez Montes, María; Ayarzagüena Porras, Blanca; Guijarro Mata-García, María
    The stratospheric polar vortex is a cyclonic circulation that forms over the winter pole, whose edge is characterized by a strong westerly jet (also called polar night jet, PNJ). The PNJ plays a key role in processes such as the distribution of atmospheric constituents in the polar stratosphere or the wave propagation. Further, variations in PNJ can also affect the troposphere, being behind the occurrence of extreme events near the Earth’s surface. Thus, it is important to correctly characterize the mean state of the PNJ and its variability. Already existing algorithms, although working, may present several issues. The simplest ones, those based on zonal mean wind, can miss important information. In contrast, the 2-dimensional ones usually involve multiple calculations with several fields, some of them not always included in typical datasets. In this study, we describe a new artificial intelligence technique to characterize the PNJ. The algorithm only requires data of zonal wind that is classified each time step with a decision trees algorithm with 95.5% accuracy, trained with images processed by a climate science researcher. The classifier is applied to JRA-55 reanalysis data and the output of simulations of three climate models and is found to perform reasonably well when validated against traditional zonal-mean methods. Indeed, it provides more information about the PNJ, as it offers in one step the PNJ region, averaged magnitudes and even identify if the PNJ is under perturbed conditions. We have explored two examples of potential applications of the classifier such as the study of the influence of climate change on the PNJ and the variability of the PNJ on monthly and daily scales. In both cases, our algorithm has produced coherent results with those produced with previous studies, but with more detail obtained at a single step.
  • Item
    Elevated stratopause events in the current and a future climate: A chemistry-climate model study
    (Journal of atmospheric and solar-terrestrial physics, 2021) Scheffler, Janice; Ayarzagüena Porras, Blanca; Orsolini, Yvan J.; Langematz, Ulrike
    The characteristics and driving mechanisms of Elevated Stratopause Events (ESEs) are examined in simulations of the ECHAM/MESSy Atmospheric Chemistry (EMAC) chemistry-climate model under present and projected climate conditions. ESEs develop after sudden stratospheric warmings (SSWs) in boreal winter. While the stratopause descends during SSWs, it is reformed at higher altitudes after the SSWs, leading to ESEs in years with a particularly high new stratopause. EMAC reproduces well the frequency and main characteristics of observed ESEs. ESEs occur in 24% of the winters, mostly after major SSWs. They develop in stable polar vortices due to a persistent tropospheric wave forcing leading to a prolonged zonal wind reversal in the lower stratosphere. By wave filtering, this enables a faster re-establishment of the mesospheric westerly jet, polar downwelling and a higher stratopause. We find the presence of a westward-propagating wavenumber-1 planetary wave in the mesosphere following the onset, consistent with in-situ generation by large-scale instability. By the end of the 21st century, the number of ESEs is projected to increase, mainly due to a sinking of the original stratopause after strong tropospheric wave forcing and planetary wave dissipation at lower levels. Future ESEs develop preferably in more intense and cold polar vortices, and tend to be shorter. While in the current climate, planetary wavenumber-2 contributes to the forcing of ESEs, future wave forcing is dominated by wavenumber-1 activity as a result of climate change. Hence, a persistent wave forcing seems to be more relevant for the development of an ESE than the wavenumber decomposition of the forcing.
  • Item
    No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI
    (Atmospheric Chemistry and Physics, 2018) Ayarzagüena Porras, Blanca; Polvani, Lorenzo M.; Langematz, Ulrike; Akiyoshi, Hideharu; Bekki, Slimane; Butchart, Neal; Dameris, Martin; Deushi, Makoto; Hardiman, Steven C.; Jöckel, Patrick; Klekociuk, Andrew; Marchand, Marion; Michou, Martine; Morgenstern, Olaf; O'Connor, Fiona M.; Oman, Luke D.; Plummer, David A.; Revell, Laura; Rozanov, Eugene; Saint-Martin, David; Scinocca, John; Stenke, Andrea; Stone, Kane; Yamashita, Yousuke; Yoshida, Kohei; Zeng, Guang
    Major mid-winter stratospheric sudden warmings (SSWs) are the largest instance of wintertime variability in the Arctic stratosphere. Because SSWs are able to cause significant surface weather anomalies on intra-seasonal timescales, several previous studies have focused on their potential future change, as might be induced by anthropogenic forcings. However, a wide range of results have been reported, from a future increase in the frequency of SSWs to an actual decrease. Several factors might explain these contradictory results, notably the use of different metrics for the identification of SSWs and the impact of large climatological biases in single-model studies. To bring some clarity, we here revisit the question of future SSW changes, using an identical set of metrics applied consistently across 12 different models participating in the Chemistry–Climate Model Initiative. Our analysis reveals that no statistically significant change in the frequency of SSWs will occur over the 21st century, irrespective of the metric used for the identification of the event. Changes in other SSW characteristics – such as their duration, deceleration of the polar night jet, and the tropospheric forcing – are also assessed: again, we find no evidence of future changes over the 21st century.