Person:
Ayarzagüena Porras, Blanca

Loading...
Profile Picture
First Name
Blanca
Last Name
Ayarzagüena Porras
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 9 of 9
  • Publication
    A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal
    (MDPI AG, 2016-07) Rodríguez de Fonseca, María Belén; Suárez Moreno, Roberto; Ayarzagüena Porras, Blanca; López Parages, Jorge; Gómara Cardalliaguet, Iñigo; Villamayor Moreno, Julián; Mohino Harris, Elsa; Losada Doval, Teresa; Castaño Tierno, Antonio
    The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.
  • Publication
    Estudio de los calentamientos estratosféricos en el hemisferio norte y su huella troposférica: pasado reciente, presente y futuro = Study of stratospheric warmings in the Northern Hemisphere and their tropospheric fingerprint: recent past, present and future
    (Universidad Complutense de Madrid, Servicio de Publicaciones, 2012-06-04) Ayarzagüena Porras, Blanca; Serrano Mendoza, Encarnación; Langematz, Ulrike
    The main aim of this PhD thesis is to improve the knowledge of boreal stratospheric warmings, with a special focus on the associated tropospheric‐stratospheric feedbacks. To achieve this goal, different features of these phenomena that have not been investigated yet or that do not show a consensus among previous studies are analyzed in detail. This analysis refers to the two most relevant types of warmings, major stratospheric warmings (MSWs) and stratospheric final warmings (SFWs), in different periods of time: the recent past and present (since 1960), and the future.
  • Publication
    Sudden stratospheric warmings
    (American Geophysical Union, 2021-03) Ayarzagüena Porras, Blanca
    Sudden stratospheric warmings (SSWs) are impressive fluid dynamical events in which large and rapid temperature increases in the winter polar stratosphere (∼10–50 km) are associated with a complete reversal of the climatological wintertime westerly winds. SSWs are caused by the breaking of planetary-scale waves that propagate upwards from the troposphere. During an SSW, the polar vortex breaks down, accompanied by rapid descent and warming of air in polar latitudes, mirrored by ascent and cooling above the warming. The rapid warming and descent of the polar air column affect tropospheric weather, shifting jet streams, storm tracks, and the Northern Annular Mode, making cold air outbreaks over North America and Eurasia more likely. SSWs affect the atmosphere above the stratosphere, producing widespread effects on atmospheric chemistry, temperatures, winds, neutral (nonionized) particles and electron densities, and electric fields. These effects span both hemispheres. Given their crucial role in the whole atmosphere, SSWs are also seen as a key process to analyze in climate change studies and subseasonal to seasonal prediction. This work reviews the current knowledge on the most important aspects of SSWs, from the historical background to dynamical processes, modeling, chemistry, and impact on other atmospheric layers.
  • Publication
    Elevated stratopause events in the current and a future climate: A chemistry-climate model study
    (Elsevier, 2021-11-22) Scheffler, Janice; Ayarzagüena Porras, Blanca; Orsolini, Yvan J.; Langematz, Ulrike
    The characteristics and driving mechanisms of Elevated Stratopause Events (ESEs) are examined in simulations of the ECHAM/MESSy Atmospheric Chemistry (EMAC) chemistry-climate model under present and projected climate conditions. ESEs develop after sudden stratospheric warmings (SSWs) in boreal winter. While the stratopause descends during SSWs, it is reformed at higher altitudes after the SSWs, leading to ESEs in years with a particularly high new stratopause. EMAC reproduces well the frequency and main characteristics of observed ESEs. ESEs occur in 24% of the winters, mostly after major SSWs. They develop in stable polar vortices due to a persistent tropospheric wave forcing leading to a prolonged zonal wind reversal in the lower stratosphere. By wave filtering, this enables a faster re-establishment of the mesospheric westerly jet, polar downwelling and a higher stratopause. We find the presence of a westward-propagating wavenumber-1 planetary wave in the mesosphere following the onset, consistent with in-situ generation by large-scale instability. By the end of the 21st century, the number of ESEs is projected to increase, mainly due to a sinking of the original stratopause after strong tropospheric wave forcing and planetary wave dissipation at lower levels. Future ESEs develop preferably in more intense and cold polar vortices, and tend to be shorter. While in the current climate, planetary wavenumber-2 contributes to the forcing of ESEs, future wave forcing is dominated by wavenumber-1 activity as a result of climate change. Hence, a persistent wave forcing seems to be more relevant for the development of an ESE than the wavenumber decomposition of the forcing.
  • Publication
    Jet stream position explains regional anomalies in European beech forest productivity and tree growth
    (Nature Publishing Group, 2022-04-19) Ayarzagüena Porras, Blanca; otros, ...
    The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions. Here the authors show that extremes in the summer jet stream position over Europe create a beech forest productivity dipole between northwestern and southeastern Europe and can result in regional anomalies in forest carbon uptake and growth.
  • Publication
    Polar night jet characterization through artificial intelligence
    (Elsevier, 2022-07-08) Rodríguez Montes, María; Ayarzagüena Porras, Blanca; Guijarro Mata-García, María
    The stratospheric polar vortex is a cyclonic circulation that forms over the winter pole, whose edge is characterized by a strong westerly jet (also called polar night jet, PNJ). The PNJ plays a key role in processes such as the distribution of atmospheric constituents in the polar stratosphere or the wave propagation. Further, variations in PNJ can also affect the troposphere, being behind the occurrence of extreme events near the Earth’s surface. Thus, it is important to correctly characterize the mean state of the PNJ and its variability. Already existing algorithms, although working, may present several issues. The simplest ones, those based on zonal mean wind, can miss important information. In contrast, the 2-dimensional ones usually involve multiple calculations with several fields, some of them not always included in typical datasets. In this study, we describe a new artificial intelligence technique to characterize the PNJ. The algorithm only requires data of zonal wind that is classified each time step with a decision trees algorithm with 95.5% accuracy, trained with images processed by a climate science researcher. The classifier is applied to JRA-55 reanalysis data and the output of simulations of three climate models and is found to perform reasonably well when validated against traditional zonal-mean methods. Indeed, it provides more information about the PNJ, as it offers in one step the PNJ region, averaged magnitudes and even identify if the PNJ is under perturbed conditions. We have explored two examples of potential applications of the classifier such as the study of the influence of climate change on the PNJ and the variability of the PNJ on monthly and daily scales. In both cases, our algorithm has produced coherent results with those produced with previous studies, but with more detail obtained at a single step.
  • Publication
    A multi-parametric perspective of the North Atlantic eddy-driven jet
    (Springer, 2022-11-18) Barriopedro Cepero, David; Ayarzagüena Porras, Blanca; García Burgos, Marina; García Herrera, Ricardo
    The North Atlantic eddy-driven jet (EDJ) is an essential component of the Euro-Atlantic atmospheric circulation. It has been typically described in terms of latitude and intensity but this is not enough to fully characterize its variability and complex EDJ confgurations. Here, we present a set of daily parameters of the EDJ based on low-tropospheric zonal wind data for the 1948–2020 period. They describe the intensity, sharpness, location, edges, tilt and other zonal asymmetries of the EDJ, therefore dissecting its structure beyond the latitudinal regimes. This allows for assessments of specifc EDJ aspects and a multi-parametric treatment of EDJ confgurations in a manageable way. Overall, variations in EDJ parameters refect distinctive patterns of eddy forcing and wave breaking, with anticyclonic eddies playing a major role in shaping the EDJ structure. A multimodal behavior of the EDJ is only detected in latitude, which largely infuences the longitudinal position of the EDJ. Other aspects of the EDJ are less constrained by the latitude and display a variety of confgurations. Four multi-parametric states (northern, central, tilted and split EDJs) provide a satisfactory description of recurrent patterns of the EDJ. They participate in meridional migrations of the EDJ, but yield less dramatic transitions than viewed from the latitudinal perspective. Finally, the EDJ parameters help to better understand the EDJ infuence on European climate. In many regions, latitude and intensity contain limited information on near-surface anomalies, and their signals can be masked by the additional efect of other EDJ parameters.
  • Publication
    On the representation of major stratospheric warmings in reanalyses
    (Copernicus publications, 2019-07-26) Ayarzagüena Porras, Blanca; Palmeiro Nuñez, Froila María; Barriopedro Cepero, David; Calvo Fernández, Natalia; Langematz, Ulrike; Shibata, Kiyotaka
    Major sudden stratospheric warmings (SSWs) represent one of the most abrupt phenomena of the boreal wintertime stratospheric variability, and constitute the clearest example of coupling between the stratosphere and the troposphere. A good representation of SSWs in climate models is required to reduce their biases and uncertainties in future projections of stratospheric variability. The ability of models to reproduce these phenomena is usually assessed with just one reanalysis. However, the number of reanalyses has increased in the last decade and their own biases may affect the model evaluation. Here we compare the representation of the main aspects of SSWs across reanalyses. The examination of their main characteristics in the pre- and post-satellite periods reveals that reanalyses behave very similarly in both periods. However, discrepancies are larger in the pre-satellite period compared to afterwards, particularly for the NCEP-NCAR reanalysis. All datasets reproduce similarly the specific features of wavenumber-1 and wavenumber-2 SSWs. A good agreement among reanalyses is also found for triggering mechanisms, tropospheric precursors, and surface response. In particular, differences in blocking precursor activity of SSWs across reanalyses are much smaller than between blocking definitions.
  • Publication
    Meteolab como herramienta educativa de Meteorología en el Aula
    (2021-10) Rodriguez Fonseca, María Belén; Abalos Álvarez, Marta; Alvarez Solas, Jorge; Ayarzagüena Porras, Blanca; Benito Barca, Samuel; Calvo Fernández, Natalia; de la Cámara Illescas, Alvaro; Durán Montejano, Luis; García Herrena, Ricardo; Garrido Pérez, José Manuel; Gómara Cardalliaguet, Iñigo; Losada Doval, Teresa; Mohino Harris, Elsa; Montoya Redondo, Marisa Luisa; Ordoñez García, Carlos; Polo Sánchez, Irene; Robinson, Alexander James; Sastre Marugán, Mariano; Serrano Mendoza, Encarnación; Yagüe Anguis, Carlos; Zurita Gotor, Pablo; García Burgos, Marina; González Alemán, Juan Jesús; González Barras, Rosa María; González Rouco, Jesús Fidel; Martín Gómez, Verónica; Maqueda Burgos, Gregorio
    El Presente proyecto es una continuación de proyectos anteriores dentro de la plataforma de divulgación Meteolab. Meteolab es un proyecto de divulgación de Meteorología y Clima que tiene su origen en 2002, cuando se comenzaron a diseñar experimentos de bajo coste con materiales caseros para la Semana de la Ciencia de la Comunidad de Madrid (CAM). Con los años, se generó un conocimiento que se materializó en 2010 con la concesión de un Proyecto de Innovación Educativa (PIE) financiado por la Universidad Complutense de Madrid (UCM), dirigido por Belén Rodríguez de Fonseca. Gracias a este primer proyecto en el que trabajaron muchos profesores y alumnos de ciencias de la atmósfera, se gestó un portal web (meteolab.fis.ucm.es) en el que los experimentos se explicaban y se grababan para impulsar su difusión. Más adelante, en un segundo proyecto de Innovación Educativa, dirigido por la profesora Maria Luisa Montoya, los contenidos fueron traducidos al inglés. En concreto, los experimentos que componen Meteolab tienen como principal objetivo entender los principios y variables que determinan el comportamiento de las masas de aire en la atmósfera y de agua en el océano. La idea consiste en visualizar con experimentos sencillos las leyes físicas que gobiernan la atmósfera y el océano: movimientos horizontales y verticales, cambios de estado, mezcla y equilibrio, así como la interacción entre componentes. Se persigue observar los procesos meteorológicos familiares, como son la formación de una nube, los tornados, la convección, la formación de borrascas o la lluvia, entendiendo los procesos físicos que los producen. Finalmente, Meteolab permite también visualizar fenómenos climáticos como el efecto invernadero, el fenómeno de El Niño, el deshielo del Ártico, la influencia de los volcanes en el clima o la subida del nivel del mar. Existe un catálogo de experimentos, la mayoría de los cuales pueden consultarse a través del portal meteolab.fis.ucm.es, encontrándose todos ellos físicamente localizados en el Laboratorio Elvira Zurita de la Facultad de Ciencias Físicas. Tras la experiencia acumulada durante los 18 años de existencia de Meteolab, en los que se han adecuado las explicaciones de los experimentos a distintos niveles de dificultad (infantil, primaria, secundaria, bachillerato y Universidad de mayores), se ha sugerido la idoneidad de adaptar los contenidos a los estudiantes del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Así, por ejemplo, cuando se explica la formación de una nube, se puede ir complicando el discurso dependiendo de los diferentes ciclos de la enseñanza. De esta manera, para un nivel de escuela primaria uno sólo tiene que explicar que el aire se enfría al ascender, y al enfriarse se forman gotas de agua que forman las nubes. Al llegar a secundaria, los estudiantes aprenden el concepto de presión atmosférica y la relación entre la temperatura, la presión y el volumen de una parcela de aire. Más adelante, en el Grado en Física, se estudia la tensión de vapor, la expansión adiabática y la existencia de núcleos de condensación. Finalmente, en el Máster en Meteorología se aprenden los distintos procesos de nucleación y tipos de nubes. Todos estos conceptos van complicando la explicación, por lo que un mismo experimento puede explicarse tanto en una escuela infantil como en una Universidad. Es por ello, que, aprovechando la plataforma de divulgación Meteolab, hemos decidido dar un paso adelante y adaptar y ampliar los contenidos de Meteolab, para así poder integrarlos en los currícula del Grado en Física y del Máster en Meteorología y Geofísica de la UCM. Con todo ello, los objetivos del presente proyecto han sido: -Implementar los experimentos de Meteolab en el Aula, tanto en las asignaturas de Grado como en las de Máster. -Adaptar los contenidos existentes del portal web Meteolab (meteolab.fis.ucm.es) a las asignaturas relacionadas con Meteorología del Grado en Física y del Máster en Meteorología y Geofísica, con el fin de visualizar procesos físicos que se explican en el aula. -Añadir a Meteolab nuevos contenidos en relación con la dinámica de la atmósfera y el cambio climático. -Evaluar la mejora de la comprensión por parte del alumnado de los procesos que tienen lugar principalmente en la atmósfera y el océano, y su relación con el clima y su variabilidad.