Person:
Agüí Chicharro, María Lourdes

Loading...
Profile Picture
First Name
María Lourdes
Last Name
Agüí Chicharro
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Químicas
Department
Química Analítica
Area
Química Analítica
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 10 of 16
  • Item
    Simultaneous determination of CXCL7 chemokine and MMP3 metalloproteinase as biomarkers for rheumatoid arthritis
    (Talanta, 2021) Guerrero Irigoyen, Sara; Sánchez Tirado, Esther; Agüí Chicharro, María Lourdes; González Cortés, Araceli; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    This paper reports the preparation of the first dual electrochemical immunosensor for the simultaneous determination of the CXCL7 chemokine and the MMP3 metalloproteinase as relevant biomarkers for the better diagnosis and monitoring of rheumatoid arthritis derived from the multiple biomarkers measurement. The developed immunosensor involves the use of carboxylated magnetic beads (MBs) and dual screen-printed carbon electrodes (SPdCEs). Sandwich-type configurations implied the covalent immobilization of specific anti-CXCL7 (cAb1) or anti-MMP3 (cAb2) capture antibodies onto MBs and the use of biotinylated detection antibodies with further labelling with HRP-Strept conjugates. The resulting MBS bioconjugates were magnetically captured on the respective working electrode of the SPdCE and the determination of the antigens was accomplished by measuring the amperometric responses of H2O2 mediated by hydroquinone (HQ) at a potential value of −0.20 V. The dual immunosensor provided calibration plots with linear ranges between 1 and 75 ng mL−1 (CXCL7) (R2 = 0.997) and from 2.0 to 2000 pg mL−1 (MMP3) (R2 = 0.998) with detection limits of 0.8 ng mL−1 and 1.2 pg mL−1, respectively. The assay took 2 h 20 min for the simultaneous determination of both biomarkers. The dual immunosensor was successfully applied to the analysis of human serum from positive and negative RA patients.
  • Item
    Development of an Electrochemical CCL5 Chemokine Immunoplatform for Rapid Diagnosis of Multiple Sclerosis
    (Biosensors, 2022) Guerrero Irigoyen, Sara; Sánchez Tirado, Esther; Agüí Chicharro, María Lourdes; González Cortés, Araceli; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    Serum level of CCL5 chemokine is considered an emerging biomarker for multiple sclerosis (MS). Due to the lack of specific assays for this disease, the development of a point-of-care test for rapid detection of MS could lead to avoiding diagnostics delays. In this paper, we report the first electrochemical immunoplatform for quantification of the CCL5 biomarker at the clinically required levels, able to discriminate between patients diagnosed with MS and healthy individuals. The immunosensing device involves protein capture from biological samples by complexation with biotinylated specific antibodies immobilized onto neutravidin-functionalized microparticles and sandwich assay with anti-CCL5 antibody and IgG labelled with horseradish peroxidase (HRP) for the enzyme-catalyzed amperometric detection of H2O2 using hydroquinone (HQ) as the redox mediator. The method shows excellent analytical performance for clinical application with a wide linear range of concentrations (0.1–300 ng·mL−1 CCL5, R2 = 0.998) and a low detection limit (40 pg·mL−1 CCL5). The biosensing platform was applied to the determination of the CCL5 endogenous content in 100-fold diluted sera both from healthy individuals and patients diagnosed with MS, with no further sample treatment in just two hours. The results were successfully compared with those obtained by the ELISA methodology.
  • Item
    Serum autoantibody biomarkers for management of rheumatoid arthritis disease
    (Biosensors, 2023) Sánchez Tirado, Esther; Agüí Chicharro, María Lourdes; Sánchez-Paniagua López, Marta; González Cortés, Araceli; López Ruiz, María Beatriz; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    Rheumatoid arthritis (RA) is a systemic chronic autoimmune inflammatory disease that is characterized by the destruction of bone and production of autoantibodies such as rheumatoid factor (RF) and anticitrullinated protein antibodies (ACPAs). The high prevalence of this disease and the need of affordable tools for its early detection led us to prepare the first electrochemical immunoplatform for the simultaneous determination of four RA biomarkers, the autoantibodies: RF, anti-peptidyl-arginine deiminase enzyme (anti-PAD4), anti-cyclic citrullinated peptide (anti-CCP), and anti-citrullinated vimentin (anti-MCV). Functionalized magnetic beads (MBs) were used to immobilize the specific antigens, and sandwich-type immunoassays were implemented for the amperometric detection of the four autoantibodies, using the horseradish peroxidase (HRP)/H2O2/hydroquinone (HQ) system. The immunoplatform was applied to the determination of the biomarkers in human serum of twenty-two patients diagnosed with RA and four healthy individuals, and the results were validated against ELISA tests and the certified values.
  • Item
    What Electrochemical Biosensors Can Do for Forensic Science? Unique Features and Applications
    (Biosensors, 2019) Yáñez-Sedeño Orive, Paloma; Agüí Chicharro, María Lourdes; Campuzano Ruiz, Susana; Pingarrón Carrazón, José Manuel
    This article critically discusses the latest advances in the use of voltammetric, amperometric, potentiometric, and impedimetric biosensors for forensic analysis. Highlighted examples that show the advantages of these tools to develop methods capable of detecting very small concentrations of analytes and provide selective determinations through analytical responses, without significant interferences from other components of the samples, are presented and discussed, thus stressing the great versatility and utility of electrochemical biosensors in this growing research field. To illustrate this, the determination of substances with forensic relevance by using electrochemical biosensors reported in the last five years (2015–2019) are reviewed. The different configurations of enzyme or affinity biosensors used to solve analytical problems related to forensic practice, with special attention to applications in complex samples, are considered. Main prospects, challenges to focus, such as the fabrication of devices for rapid analysis of target analytes directly on-site at the crime scene, or their widespread use and successful applications to complex samples of interest in forensic analysis, and future efforts, are also briefly discussed.
  • Item
    Project number: 316
    Implementación de la metodología flipped classroom en los laboratorios de Química Analítica
    (2023) Reviejo García, Ángel Julio; Agüí Chicharro, María Lourdes; Campuzano Ruiz, Susana; Gamella Carballo, Maria; García Martín, Ángel Felipe; González Cortés, Araceli; Guerrero Blanco, José Ignacio; Mateos Briz, María Raquel; Miguel Bravo, María; Pérez Ginés, Víctor; Reviejo Martínez, Eva; Romano Martín, Santiago; Ruiz-Valdepeñas Montiel, Víctor; Sánchez Tirado, Esther; Santiago Sáez, Andrés Sebastián; Serafín González-Carrato, Verónica; Torrente Rodríguez, Rebeca Magnolia; Yáñez-Sedeño, Paloma; Pedrero Muñoz, María
    Adaptar el sistema tradicional de aprendizaje a las necesidades actuales del alumnado empleando la metodología flipped classroom en el laboratorio de Química Analítica I, con el objetivo de fomentar el aprendizaje utilizando herramientas digitales.
  • Item
    Electrochemical (Bio)Sensing Devices for Human-Microbiome-Related Biomarkers
    (Sensors, 2023) Sánchez Tirado, Esther; Agüí Chicharro, María Lourdes; González Cortés, Araceli; Campuzano Ruiz, Susana; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    The study of the human microbiome is a multidisciplinary area ranging from the field of technology to that of personalized medicine. The possibility of using microbiota biomarkers to improve the diagnosis and monitoring of diseases (e.g., cancer), health conditions (e.g., obesity) or relevant processes (e.g., aging) has raised great expectations, also in the field of bioelectroanalytical chemistry. The well-known advantages of electrochemical biosensors—high sensitivity, fast response, and the possibility of miniaturization, together with the potential for new nanomaterials to improve their design and performance—position them as unique tools to provide a better understanding of the entities of the human microbiome and raise the prospect of huge and important developments in the coming years. This review article compiles recent applications of electrochemical (bio)sensors for monitoring microbial metabolites and disease biomarkers related to different types of human microbiome, with a special focus on the gastrointestinal microbiome. Examples of electrochemical devices applied to real samples are critically discussed, as well as challenges to be faced and where future developments are expected to go..
  • Item
    Click chemistry-assisted antibodies immobilization for immunosensing of CXCL7 chemokine in serum
    (Journal of Electroanalytical Chemistry, 2019) Guerrero Irigoyen, Sara; Agüí Chicharro, María Lourdes; Barderas Manchado, Rodrigo; Campuzano Ruiz, Susana; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel; Cadanno Mendía, Dona
    The first electrochemical immunosensor for the determination of CXCL7 (chemokine (C-X-C motif) ligand 7) autoimmune biomarker is reported in this work. Click chemistry-assisted antibodies immobilization was per formed by reaction of azide functionalized-multi-walled carbon nanotubes (MWCNTs) and ethynyl-IgG onto screen-printed carbon electrodes. The capture antibodies were further immobilized onto IgG-MWCNTs con jugates. After a blocking step with casein, a sandwich immunoassay was implemented involving biotinylated detector antibodies and alkaline phosphatase (AP)-streptavidin conjugate. Differential pulse voltammetry upon addition of 1-naphthylphosphate was used as the analytical readout. A linear calibration plot between 0.5 and 600 pg mL−1 CXCL7 and a LOD value of 0.1 pg mL−1 were obtained. The usefulness of the immunosensor was demonstrated by the successful analysis of serum samples from patients with rheumatoid arthritis.
  • Item
    Multiplexed determination of human growth hormone and prolactin at a label free electrochemical immunosensor using dual carbon nanotube–screen printed electrodes modified with gold and PEDOT nanoparticles
    (Analyst, 2014) Serafín González-Carrato, Verónica; Martínez-García, Gonzalo; Agüí Chicharro, María Lourdes; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    A label-free dual electrochemical immunosensor was constructed for the multiplexed determination of human growth (hGH) and prolactin (PRL) hormones. The immunosensor used an electrochemical platform composed of carbon nanotube–screen printed carbon electrodes (CNT/SPCEs) modified with poly(ethylene-dioxythiophene) (PEDOT) and gold nanoparticles, on which the corresponding hGH and PRL antibodies were immobilized. The affinity reactions were monitored by measuring the decrease in the differential pulse voltammetric oxidation response of the redox probe dopamine. The experimental variables involved in the preparation of both AuNP/PEDOT/CNT/SPC modified electrodes and the dual immunosensor were optimized. The immunosensor exhibited an improved analytical performance for hGH and PRL with respect to other electrochemical immunosensor designs, showing wide ranges of linearity and low detection limits of 4.4 and 0.22 pg mL−1, respectively. An excellent selectivity against other hormones and in the presence of ascorbic and uric acids was found. The usefulness of the dual immunosensor for the simultaneous analysis of hGH and PRL was demonstrated by analyzing human serum and saliva samples spiked with the hormones at different concentration levels.
  • Item
    Oxidative grafting vs. monolayers self-assembling on gold surface for the preparation of electrochemical immunosensors. Application to the determination of peptide YY
    (Talanta, 2018) Guerrero Irigoyen, Sara; Agüí Chicharro, María Lourdes; Yáñez-Sedeño Orive, Paloma; Pingarrón Carrazón, José Manuel
    A comparison of the performance of two electrochemical immunosensors for the determination of the anorexigen biomarker peptide YY (PYY) is reported by using as scaffolds screen printed gold electrodes modified either by oxidative grafting of p-aminobenzoic acid (p-ABA) or by assembling of a 4-mercaptobenzoic acid (4-MBA) SAM. Covalent immobilization of capture antibodies on the surface-confined carboxyl groups was carried out by EDC/NHSS chemistry, and competitive immunoassays between target PYY and Biotin-PYY were implemented. Upon labeling with alkaline phosphatase (AP)-streptavidin conjugate and 1-naphtyl phosphate addition, differential pulse voltammograms recorded between −0.2 and +0.7 V were used as analytical readout. All the steps involved in the functionalization of the electrodes and the preparation of the immunosensors were monitored by electrochemical impedance spectroscopy. The calibration plot for PYY using the AP-Strept-Biotin-PYY(PYY)-anti-PYY-Phe-N-SPAuE immunosensor provided a linear current vs. log [PYY] plot extending between 10−6 and 103 ng/mL PYY with a detection limit of 3 × 10−7 ng/mL. These analytical characteristics are remarkably better than those obtained with the immunosensor prepared with 4-MBA SAM-SPAuEs. The AP-Strept-Biotin-PYY(PYY)-anti-PYY-Phe-N-SPAuE immunosensor was used to analyze human serum and saliva samples spiked with PYY at concentrations fitting with normal levels in these biological fluids.
  • Item
    Project number: PIMCD365/23-24
    La metodología “flipped classroom” como herramienta para dinamizar los laboratorios de Química Analítica
    (2024) Sánchez Tirado, Esther; Agüí Chicharro, María Lourdes; Blanco Asenjo, Miriam; García Martín, Ángel Felipe; García Rodrigo, Lorena; González Cortés, Araceli; Mateos Briz, María Raquel; Ramos López, Claudia; Reviejo García, Ángel Julio; Rico Hermoso, Álvaro; Romano Martín, Santiago; Yáñez-Sedeño Orive, Paloma
    Se implementará la metodología “flipped classroom” o clase invertida en el laboratorio de Química Analítica II del Grado en Química, con el objetivo de fomentar el aprendizaje de competencias empíricas utilizando herramientas digitales.