Person:
Ramos Domínguez, Rosa María

Loading...
Profile Picture
First Name
Rosa María
Last Name
Ramos Domínguez
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Matemáticas
Department
Estadística e Investigación Operativa
Area
Estadística e Investigación Operativa
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 4 of 4
Loading...
Thumbnail Image
Publication

Locating a facility on a network with multiple median-type objectives

1999, Ramos Domínguez, Rosa María, Ramos, M.T., Colebrook, M., Sicilia, J.

We consider the problem of locating a single facility on a network in the presence of r greater than or equal to 2 median-type objectives, represented by r sets of edge weights (or lengths) corresponding to each of the objectives. When r = 1, then one gets the classical 1-median problem where only the vertices need to be considered for determining the optimal location (Hakimi [1]). The paper examines the case when r greater than or equal to 2 and provides a method to determine the non-dominated set of points for locating the facility

Loading...
Thumbnail Image
Publication

Recursos interactivos para prácticas con software estadístico en Informática II. Elaboración de guías prácticas

2019-06-10, Ramos Domínguez, Rosa María, Landaburu Jiménez, Elena, Franco Pereira, Alba María, Vadillo Muñoz, Óscar Noe, Prieto Martínez, Juan José

Loading...
Thumbnail Image
Publication

Recursos interactivos para prácticas con Software Estadístico en Informática

2018, Franco Pereira, Alba María, Landaburu, Elena, Prieto Martínez, Juan José, Ramos Domínguez, Rosa María, Vadillo Muñoz, Óscar

Loading...
Thumbnail Image
Publication

The problem of the optimal biobjective spanning tree

1998-12-16, Ramos Domínguez, Rosa María, Alonso, S., Sicilia, J., González, C.

This paper studies the problem of finding the set of optimal spanning trees of a connected graph, considering two cost functions defined on the set of edges. This problem is NP-hard and the solution is described through an algorithm that builds the family of efficient trees. This algorithm needs two procedures that solve the following uniobjective problems: the construction of all the spanning trees of a connected graph and the construction of the whole set of minimum cost spanning trees. The computational results obtained are shown in Section 5. (C) 1998 Elsevier Science B.V. All rights reserved.