Person:
Mas Zubiri, Alicia

Loading...
Profile Picture
First Name
Alicia
Last Name
Mas Zubiri
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Veterinaria
Department
Sanidad Animal
Area
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 10 of 15
  • Publication
    Virulencia de aislados de Leishmania infantum procedentes del brote de leishmaniosis humana en la Comunidad de Madrid: caracterización y evaluación en células de reservorios mamíferos
    (Universidad Complutense de Madrid, 2021-08-18) Mas Zubiri, Alicia; Domínguez Bernal, Gustavo Ramón; Carrión Herrero, Francisco Javier
    La leishmaniosis visceral zoonótica (ZVL) producida por L. infantum, es una enfermedad parasitaria que constituye un gran reto para la salud pública al afectar tanto a seres humanos como a perros, siendo estos últimos el principal reservorio. Su transmisión, fundamentalmente vectorial, se lleva a cabo mediante insectos denominados flebotomos pertenecientes al género Lutzomyia en América Central y del Sur y Phlebotomus en la Cuenca Mediterránea, Oriente Medio y Asia. Se trata de una enfermedad que cursa con cuadros clínicos de gravedad variable en los hospedadores, con manifestaciones tanto cutáneas como viscerales, que pueden incluso llegar a producir la muerte de los pacientes si no se recibe el tratamiento adecuado...
  • Publication
    Immunization with the HisAK70 DNA Vaccine Induces Resistance against Leishmania Amazonensis Infection in BALB/c Mice
    (MDPI, 2019-11-14) Martínez Rodrigo, Abel; S. Dias, Daniel; Ribeiro, Patrícia A. F.; Roatt, Bruno M.; Mas Zubiri, Alicia; Carrión Herrero, Francisco Javier; Coelho, Eduardo A. F.; Domínguez Bernal, Gustavo Ramón
    Leishmania amazonensis is the aetiological agent of a broad spectrum of leishmaniosis in South America. It can cause not only numerous cases of cutaneous leishmaniosis but also diffuse cutaneous leishmaniosis. Considering the diversity of parasite species causing different forms of the disease that coexist in the same region, it is desirable to develop a vaccine capable of eliciting cross-protection. We have previously described the use of HisAK70 DNA vaccine for immunization of mice to assess the induction of a resistant phenotype against Leishmania major and infantum infections. In this study, we extended its application in the murine model of infection by using L. amazonensis promastigotes. Our data revealed that 14 weeks post-infection, HisAK70-vaccinated mice showed key biomarkers of protection, such as higher iNOS/arginase activity, IFN-γ/IL-10, IFN-γ/IL-4, and GM-CSF/IL-10 ratios, in addition to an IgG2a-type response when compared to the control group. These findings correlated with the presentation of lower footpad swelling and parasite burdens in the immunized compared to the control mice. Overall, this study suggests that immunization with HisAK70 may be considered a suitable tool to combat leishmaniosis as it is able to induce a potent cellular immune response, which allows to control the infection caused by L. amazonensis.
  • Publication
    Strength and medium-term impact of HisAK70 immunization in dogs: Vaccine safety and biomarkers of effectiveness for ex vivo Leishmania infantum infection
    (Elsevier, 2019-08) Fernández-Cotrina; Javier; Belinchón-Lorenzo, Silvia; Arias, Pablo; Martínez Rodrigo, Abel; Mas Zubiri, Alicia; Orden Gutiérrez, José Antonio; Fuente López, Ricardo De La; Carrión Herrero, Francisco Javier; Domínguez Bernal, Gustavo Ramón
    HisAK70candidateshave successfullybeentested incutaneous (CL) andvisceral leishmaniosis (VL)mouse models.Here,weanalysedifferentbiomarkersindogtrialsafteraheterologousimmunizationstrategywitha HisAK70candidate(plasmidDNAplusadoptivetransferofperipheralblood-deriveddendriticcells(DCs)pulsed withthesamepathoantigenandCpGODNasanadjuvant)toexploretheantileishmanialactivityinanexvivo canineco-culturesysteminthepresenceofLeishmaniainfantumparasites.Inthecaninemodel,theheterologous HisAK70vaccinecoulddecreasetheinfectionindexintheDC-Tcellco-culturesystembyupto54%after30days andreachalmost67%after100dayspost-immunization,respectively,comparedtothoseobtainedinthecontrol groupofdogs.Theobservedsecurityandpotential tofight exvivoL. infantuminfectionhighlightaHisAK70 heterologousimmunizationstrategyasapromisingalternativetoevaluateitseffectivenessagainstcanineVL.
  • Publication
    Detection and antimicrobial resistance of Enterobacteriaceae other than Escherichia coli in raccoons from the Madrid region of Spain
    (SCIENDO, 2022-11-04) Orden Gutiérrez, José Antonio; Martínez Rodrigo, Abel; Vela Alonso, Ana Isabel; Fernández-Garayzábal Fernández, José Francisco; Hurtado Morillas, Clara; Mas Zubiri, Alicia; Domínguez Bernal, Gustavo Ramón
    Raccoons are an invasive alien species widely distributed in the Madrid region of Spain. These animals can carry a variety of enteric bacteria with associated antimicrobial resistance, which can infect humans and livestock. However, to our knowledge, the presence of non-E. coli Enterobacteriaceae in raccoons has not been previously studied. We conducted a study to examine the species distribution of Enterobacteriaceae isolates other than E. coli, as well as their antimicrobial resistance, in the faeces of 83 raccoons in the Madrid region. We detected 12 Enterobacteriaceae isolates other than E. coli belonging to seven different species: Citrobacter freundii (1 isolate), Citrobacter gillenii (3 isolates), Citrobacter murliniae (1 isolate), Citrobacter portucalensis (2 isolates), Enterobacter hormaechei subsp. hoffmannii (1 isolate), Hafnia paralvei (2 isolates) and Raoultella ornithinolytica (2 isolates). These isolates were found in 7 of the 83 (8.4%) animals studied. To our knowledge, this study is the first report of the presence of non-E. coli Enterobacteriaceae in raccoon faeces. All isolates but one were resistant to at least one of the 14 antimicrobials tested. Resistance to ampicillin (83.3%), amoxicillinclavulanic acid (50%) and cefoxitin (33.3%) was the most frequent. Our study indicates that raccoons are a potential source of infection with Enterobacteriaceae other than E. coli for humans and livestock in the Madrid region.
  • Publication
    A further investigation of the leishmaniosis outbreak in Madrid (Spain): low-infectivity phenotype of the Leishmania infantum BOS1FL1 isolate to establish infection in canine cells
    (Elsevier, 2020-12) Viñals, Luis Miguel; Mas Zubiri, Alicia; Martínez Rodrigo, Abel; Orden Gutiérrez, José Antonio; Domínguez Bernal, Gustavo Ramón; Carrión Herrero, Francisco Javier
    Human leishmaniosis caused by Leishmania infantum is a zoonotic disease, with dogs as the main reservoir in Mediterranean Basin countries. The largest European outbreak of human leishmaniosis declared in the southwestern Madrid region (Spain) is characterized by unusual epidemiological and clinical features, such as the emergence of new wild reservoirs (hares and rabbits), whereas the seroprevalence, infection, and severity of canine leishmaniosis have not substantially changed since the first studies conducted in Madrid before the outbreak. Previous studies reported that L. infantum isolates from the Madrid leishmaniosis focus displayed elevated virulence in in vivo models of infection and increased infectivity in murine target cells. With the aim of studying whether changes in the host-parasite interaction and virulence profile have developed, we first assessed the behaviour of one circulating isolate of the outbreak, IPER/ES/2012/BOS1FL1 (BOS1FL1), compared to that of a well-characterized strain from canine leishmaniosis, MCAN/ES/1996/BCN150 (BCN150), in terms of infection capacity (percentage of infected cells, representing infectivity, and number of amastigotes per infected cell, representing the intensity of infection) in canine monocytes and macrophages. BCN150 displayed significantly higher infectivity (76.82 ±4.40 vs 38.58 ±2.19; P <0.0001) and intensity of infection (3.64 ±0.13 vs 1.83 ±0.12; P <0.0001) than BOS1FL1 when interacting with canine cells. Our ROS induction results did not differ significantly between the two isolates or with the responses previously described for other L. infantum isolates. Paradoxically, increased resilience to hydrogen peroxide exposure was observed for BOS1FL1 (% viability 40.62 ±5.54 vs 26.37 ±2.93; P =0.039). Finally, we demonstrated that a decreased intracellular load of BOS1FL1 was associated with increased IFN-γ (261.21 ±26.29 vs 69.80 ±9.02; P =0.0151) and decreased IL- 10 production (165.06 ±23.87 vs 264.41 ±30.58; P =0.0002). In this study, we provide the first detailed insight into the differences between the isolate BOS1FL1 from the outbreak in Madrid and the well-characterized strain BCN150 MON-1 obtained from a dog in their response to interacting with canine cells. However, further studies are necessary to shed light on the immune mechanisms resulting in BOS1FL1 exhibiting less virulent behaviour in canine cells than in cells derived from other host species.
  • Publication
    Epitope Selection for Fighting Visceral Leishmaniosis: Not All Peptides Function the Same Way
    (MDPI, 2020-07-01) Álvarez-Campos, Daniel; Martínez Rodrigo, Abel; Mas Zubiri, Alicia; Orden Gutiérrez, José Antonio; Domínguez Bernal, Gustavo Ramón; Carrión Herrero, Francisco Javier
    Visceral leishmaniosis (VL) caused by Leishmania infantum is a disease with an increasing prevalence worldwide. Treatments are expensive, toxic, and ineffective. Therefore, vaccination seems to be a promising approach to control VL. Peptide-based vaccination is a useful method due to its stability, absence of local side effects, and ease of scaling up. In this context, bioinformatics seems to facilitate the use of peptides, as this analysis can predict high binding affinity epitopes to MHC class I and II molecules of different species. We have recently reported the use of HisAK70 DNA immunization in mice to induce a resistant phenotype against L. major, L. infantum, and L. amazonensis infections. In the present study, we used bioinformatics tools to select promising multiepitope peptides (HisDTC and AK) from the polyprotein encoded in the HisAK70 DNA to evaluate their immunogenicity in the murine model of VL by L. infantum. Our results revealed that both multiepitope peptides were able to induce the control of VL in mice. Furthermore, HisDTC was able to induce a better cell-mediated immune response in terms of reduced parasite burden, protective cytokine profile, leishmanicidal enzyme modulation, and specific IgG2a isotype production in immunized mice, before and after infectious challenge. Overall, this study indicates that the HisDTC chimera may be considered a satisfactory tool to control VL because it is able to activate a potent CD4+ and CD8+ T-cell protective immune responses.
  • Publication
    Characterisation of the ex vivo virulence of Leishmania infantum isolates from Phlebotomus perniciosus from an outbreak of human leishmaniosis in Madrid, Spain
    (BioMed Central Ltd., 2014-11-07) Jiménez, Maribel; Molina, Ricardo; Ordóñez-Gutiérrez, Lara; Carrión Herrero, Francisco Javier; Domínguez Bernal, Gustavo Ramón; Martínez Rodrigo, Abel; Mas Zubiri, Alicia; Cutuli Simón, María Teresa
    Background Since mid 2009, an outbreak of human leishmaniosis in Madrid, Spain, has involved more than 560 clinical cases. Many of the cases occurred in people who live in areas around a newly constructed green park (BosqueSur). This periurban park provides a suitable habitat for sand flies (the vectors of Leishmania infantum). Indeed, studies of blood meals from sand flies captured in the area showed a strong association between the insect vector, hares or rabbits, and humans in the area. Interestingly, up to 70% of cases have been found in immunocompetent patients (aged between 46-60 years). This study was designed to evaluate the ex vivo virulence of the L. infantum isolates from Phlebotomus perniciosus captured in this area of Madrid. Methods Murine macrophages and dendritic cells were infected ex vivo with L. infantum strain BCN150, isolate BOS1FL1, or isolate POL2FL7. At different times after infection, the infection indices, cytokine production (IL-12p40 and IL-10), NO release and arginase activities were evaluated. Results Using an ex vivo model of infection in murine bone marrow-derived cells, we found that infection with isolates BOS1FL1 and POL2FL7 undermined host immune defence mechanisms in multiple ways. The main factors identified were changes in both the balance of iNOS versus arginase activities and the equilibrium between the production of IL-12 and IL-10. Infection with isolates BOS1FL1 and POL2FL7 also resulted in higher infection rates compared to the BCN150 strain. Infection index values at 24 h were as follows: BCN150-infected cells, 110 for infected MØ and 115 for infected DC; BOS1FL1-infected cells, 300 for infected MØ and 247 for infected DC; and POL2FL7-infected cells, 275 for infected MØ and 292 for infected DC. Conclusions Our data indicate that L. infantum isolates captured from this endemic area exhibited high virulence in terms of infection index, cytokine production and enzymatic activities involved in the pathogenesis of visceral leishmaniosis. Altogether, these data provide a starting point for the study of the virulence behaviour of parasites (BOS1FL1 and POL2FL7) isolated from P. perniciosus during the outbreak of human leishmaniosis in Madrid, Spain, and their involvement in infecting immunocompetent hosts.
  • Publication
    Strength and medium-term impact of HisAK70 immunization in dogs: Vaccine safety and biomarkers of effectiveness for ex vivo Leishmania infantum infection
    (Elsevier, 2019-08) Martínez Rodrigo, Abel; Mas Zubiri, Alicia; Javier Fernández-Cotrina; Silvia Belinchón-Lorenzo; Orden Gutiérrez, José Antonio; Pablo Arias; Fuente López, Ricardo De La; Carrión Herrero, Francisco Javier; Domínguez Bernal, Gustavo Ramón
    HisAK70 candidates have successfully been tested in cutaneous (CL) and visceral leishmaniosis (VL) mouse models. Here, we analyse different biomarkers in dog trials after a heterologous immunization strategy with a HisAK70 candidate (plasmid DNA plus adoptive transfer of peripheral blood-derived dendritic cells (DCs) pulsed with the same pathoantigen and CpG ODN as an adjuvant) to explore the antileishmanial activity in an ex vivo canine co-culture system in the presence of Leishmania infantum parasites. In the canine model, the heterologous HisAK70 vaccine could decrease the infection index in the DC-T cell co-culture system by up to 54% after 30 days and reach almost 67% after 100 days post-immunization, respectively, compared to those obtained in the control group of dogs. The observed security and potential to fight ex vivo L. infantum infection highlight a HisAK70 heterologous immunization strategy as a promising alternative to evaluate its effectiveness against canine VL.
  • Publication
    QUIMERA SINTÉTICA MULTIEPITÓPICA COMO VACUNA Y TRATAMIENTO FRENTE A LEISHMANIOSIS EN MAMÍFEROS
    (2022-07-04) Martínez Rodrigo, Abel; Mas Zubiri, Alicia; Carrión Herrero, Francisco Javier; Orden Gutiérrez, José Antonio; Fuente López, Ricardo De La; Domínguez Bernal, Gustavo Ramón; Universidad Complutense de Madrid
    Quimera sintética multiepitópica como vacuna y tratamiento frente a leishmaniosis en mamíferos. La invención se refiere a quimeras sintéticas que incluyen 4 péptidos multiepitópicos frente a Leishmania. Cada uno de los péptidos se ha seleccionado de una proteína de Leishmania infantum. Se trata de las histonas nucleosomales H2A, H2B, H3 y H4. La invención también se refiere a una composición farmacéutica que incluye una de estas quimeras sintéticas. También se refiere a una vacuna profiláctica y/o terapéutica frente a Leishmania spp para su uso en mamíferos y, especialmente, en humana y en perros.
  • Publication
    Raccoons (Procyon lotor) in the Madrid region of Spain are carriers of antimicrobial-resistant Escherichia coli and enteropathogenic E. coli
    (Wiley, 2020-11-23) Carrión Herrero, Francisco Javier; Orden Gutiérrez, José Antonio; Fuente López, Ricardo De La; Martínez Rodrigo, Abel; Mas Zubiri, Alicia; Domínguez Bernal, Gustavo Ramón; García‐Meniño, Isidro; Flament‐Simon, Saskia C.; Blanco, Jorge; Francisco Sobrino
    The role of wildlife in the epidemiology of antimicrobial resistance is unclear. Raccoons in North America can carry a variety of enteric bacteria, with associated antimicrobial resistance, that could infect humans and livestock. The potential for raccoons to carry these bacteria in Europe, where they are an invasive species, has not been explored. Our objectives were to determine the prevalence of Escherichia coli with associated antimicrobial resistance in raccoons from the Madrid region of Spain and to determine whether they are carriers of potential human pathogens, including verotoxin-producing E. coli (VTEC) and enteropathogenic E. coli (EPEC). In total, we tested 237 E. coli isolates from the faeces of 83 euthanized raccoons for susceptibility to 14 antimicrobial agents and the presence of VTEC and EPEC. Antimicrobial resistance to at least one antimicrobial was detected in the faeces of 51% (42/83; 95% CI, 40.1–61.1) of the raccoons tested. A high percentage of raccoons carried, in their faeces, E. coli isolates resistant to ampicillin (33%), streptomycin (33%), tetracycline (30%), sulphafurazole (31%) and trimethoprim-sulphamethoxazole (23%). We detected one isolate of extended-spectrum β-lactamase-producing E. coli from the faeces of one raccoon. We detected VTEC in the faeces of one raccoon, and EPEC in the faeces of 12% (10/83) of the raccoons. Of the raccoons that carried EPEC in their faeces, 60% (6/10) carried EPEC isolates that exhibited characteristics associated with pathogenicity in humans. Raccoons in Madrid can carry pathogenic and antimicrobial-resistant E. coli in their faeces and may be a risk to public health because of their potential to contaminate food and the environment with their faeces.