Person:
López-Oliva Muñoz, María Elvira

Loading...
Profile Picture
First Name
María Elvira
Last Name
López-Oliva Muñoz
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Fisiología
Area
Fisiología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 10 of 32
  • Item
    Bladder Dysfunction in an Obese Zucker Rat: The Role of TRPA1 Channels, Oxidative Stress, and Hydrogen Sulfide
    (2019) Blaha, Igor; López-Oliva Muñoz, María Elvira; Martínez Sainz, María Del Pilar; Recio Visedo, María Paz; Agis Torres, Ángel; Martínez Gómez, Ana Cristina; Benedito Castellote, Sara; García Sacristán, Albino; Leite Fernandes, Vitor Samuel; Prieto Ocejo, Dolores; Hernández Rodríguez, Medardo Vicente
    Purpose: This study investigates whether functionality and/or expression changes of transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential ankyrin 1 (TRPA1) channels, oxidative stress, and hydrogen sulfide (H2S) are involved in the bladder dysfunction from an insulin-resistant obese Zucker rat (OZR). Materials and methods: Detrusor smooth muscle (DSM) samples from the OZR and their respective controls, a lean Zucker rat (LZR), were processed for immunohistochemistry for studying the expression of TRPA1 and TRPV1 and the H2S synthase cystathionine beta-synthase (CBS) and cysthathionine-γ-lyase (CSE). Isometric force recordings to assess the effects of TRPA1 agonists and antagonists on DSM contractility and measurement of oxidative stress and H2S production were also performed. Results: Neuronal TRPA1 expression was increased in the OZR bladder. Electrical field stimulation- (EFS-) elicited contraction was reduced in the OZR bladder. In both LZR and OZR, TRPA1 activation failed to modify DSM basal tension but enhanced EFS contraction; this response is inhibited by the TRPA1 blockade. In the OZR bladder, reactive oxygen species, malondialdehyde, and protein carbonyl contents were increased and antioxidant enzyme activities (superoxide dismutase, catalase, GR, and GPx) were diminished. CSE expression and CSE-generated H2S production were also reduced in the OZR. Both TRPV1 and CBS expressions were not changed in the OZR. Conclusions: These results suggest that an increased expression and functionality of TRPA1, an augmented oxidative stress, and a downregulation of the CSE/H2S pathway are involved in the impairment of nerve-evoked DSM contraction from the OZR.
  • Item
    Phosphodiesterase type 4 inhibition enhances nitric oxide- and hydrogen sulfide-mediated bladder neck inhibitory neurotransmission
    (Scientific Reports, 2018) Agis Torres, Ángel; Recio Visedo, María Paz; López-Oliva Muñoz, María Elvira; Martínez Sainz, María Del Pilar; Barahona Gomáriz, María Victoria; Benedito Castellote, Sara; Bustamante, Salvador; Jiménez-Cidre; Miguel Ángel; García Sacristán, Albino; Prieto Ocejo, Dolores; Leite Fernandes, Vitor Samuel; Hernández Rodríguez, Medardo Vicente
    Nitric oxide (NO) and hydrogen sulfide (H2S) play a pivotal role in nerve-mediated relaxation of the bladder outflow region. In the bladder neck, a marked phosphodiesterase type 4 (PDE4) expression has also been described and PDE4 inhibitors, as rolipram, produce smooth muscle relaxation. This study investigates the role of PDE4 isoenzyme in bladder neck gaseous inhibitory neurotransmission. We used Western blot and double immunohistochemical staining for the detection of NPP4 (PDE4) and PDE4A and organ baths for isometric force recording to roflumilast and tadalafil, PDE4 and PDE5, respectively, inhibitors in pig and human samples. Endogenous H2S production measurement and electrical field stimulation (EFS) were also performed. A rich PDE4 and PDE4A expression was observed mainly limited to nerve fibers of the smooth muscle layer of both species. Moreover, roflumilast produced a much more potent smooth muscle relaxation than that induced by tadalafil. In porcine samples, H2S generation was diminished by H2S and NO synthase inhibition and augmented by roflumilast. Relaxations elicited by EFS were potentiated by roflumilast. These results suggest that PDE4, mainly PDE4A, is mostly located within nerve fibers of the pig and human bladder neck, where roflumilast produces a powerful smooth muscle relaxation. In pig, the fact that roflumilast increases endogenous H2S production and EFS-induced relaxations suggests a modulation of PDE4 on NO- and H2S-mediated inhibitory neurotransmission.
  • Item
    Can Meat and Meat-Products Induce Oxidative Stress?
    (Antioxidants, 2020) Macho González, Adrián; Garcimartín Álvarez, Alba; López-Oliva Muñoz, María Elvira; Bastida Codina, Sara; Benedí González, Juana María; Ros, Gaspar; Nieto, Gema; Sánchez Muniz, Francisco José
    High meat and meat-products consumption has been related to degenerative diseases. In addition to their saturated fatty acids and cholesterol contents, oxidation products generated during their production, storage, digestion, and metabolization have been largely implicated. This review begins by summarizing the concept of meat and meat-products by the main international regulatory agencies while highlighting the nutritional importance of their consumption. The review also dials in the controversy of white/red meat classification and insists in the need of more accurate classification based on adequate scores. Since one of the negative arguments that meat receives comes from the association of its consumption with the increase in oxidative stress, main oxidation compounds (malondialdehyde, thermaloxidized compounds, 4-hydroxy-nonenal, oxysterols, or protein carbonyls) generated during its production, storage, and metabolization, are included as a central aspect of the work. The review includes future remarks addressed to study the effects meat consumption in the frame of diet–gene interactions, stressing the importance of knowing the genetic variables that make individuals more susceptible to a possible oxidative stress imbalance or antioxidant protection. The importance of consumed meat/meat-products in the frame of a personalized nutrition reach in plant-food is finally highlighted considering the importance of iron and plant biophenols on the microbiota abundance and plurality, which in turn affect several aspects of our physiology and metabolism.
  • Item
    Project number: 407
    Autoevaluación, Coevaluación y el uso de las TIC como enfoque innovador en las prácticas de Fisiopatología y su efecto en el proceso de enseñanza-aprendizaje del alumno
    (2023) Leite Fernandes, Vitor Samuel; Agis Torres, Ángel; Benedito Castellote, Sara; Climent Flórez, Belén; Contreras Jiménez, Cristina; García Sacristán, Albino; Gómez del Val, Alfonso; Hernández Rodríguez, Medardo Vicente; Hernández Martín, Marina; López-Oliva Muñoz, María Elvira; Merino Martín, José Joaquín; Montenegro Álvarez De Tejera, María Pilar; Muñoz Picos, Mercedes; Navarro Dorado, Jorge; Pascual Gómez, Natalia Fernanda; Perales Calvo, Manuel; Prieto Ocejo, Dolores; Puente Maya, Francisco Jesus; Raposo González, Rafaela; Recio Visedo, María Paz; Rivera De Los Arcos, Luis; Sánchez Pina, Ana Alejandra
    En las últimas décadas, la educación universitaria ha evolucionado hacia un enfoque constructivista en consonancia con las recomendaciones del Espacio Europeo de Educación Superior (EEES). En este paradigma, los estudiantes asumen un papel activo en el proceso de enseñanza-aprendizaje, mientras los profesores actúan como facilitadores. Las metodologías constructivistas fomentan el desarrollo tanto individual como grupal de competencias específicas y genéricas, al tiempo que permiten la inclusión de agentes de evaluación formativa para estimular la crítica y la autocrítica del alumno en su desempeño. En este contexto, surge la necesidad de aplicar el constructivismo a la evaluación, involucrando al estudiante en su propio proceso de evaluación. La autoevaluación y la coevaluación emergen como alternativas concretas para lograrlo. La autoevaluación implica que el estudiante analice y valore de manera sistemática su trabajo durante el proceso de aprendizaje para mejorar resultados y fomentar la autocrítica. Por otro lado, la coevaluación es una evaluación entre compañeros que permite valorar la implicación y actitud de los miembros del grupo, estimulando el aprendizaje colectivo. Las Tecnologías de la Información y Comunicación (TIC) juegan un papel importante en la educación y en la evaluación de los alumnos, diferenciándose de las prácticas tradicionales. La implementación de TIC no solo desarrolla habilidades en el proceso enseñanza-aprendizaje, sino también favorece la autoevaluación y la coevaluación. Con base en este enfoque, se presenta un proyecto de innovación docente en la asignatura de Fisiopatología para estudiantes de Farmacia. Los alumnos crearán videos sobre temas específicos de la práctica y se evaluarán a sí mismos y a sus compañeros utilizando la herramienta App Plickers. Sin embargo, aún no existe una metodología claramente definida para la implementación de estrategias constructivistas y uso de TIC en Fisiopatología, destacando la importancia y relevancia de este proyecto.
  • Item
    Role of endogenous hydrogen sulfide in nerve-evoked relaxation of pig terminal bronchioles
    (Pulmonary Pharmacology & Therapeutics, 2016) Fernandes, Vítor S.; Recio Visedo, María Paz; López-Oliva Muñoz, María Elvira; Martínez Sainz, María Del Pilar; Fernandes Ribeiro, Ana Sofía; Barahona Gomáriz, María Victoria; Martínez Gómez, Ana Cristina; Benedito Castellote, Sara; Agis Torres, Ángel; Cabañero, Alberto; Muñoz, Gemma M.; García Sacristán, Albino; Orensanz Muñoz, Luis Miguel; Hernández Rodríguez, Medardo Vicente
    Hydrogen sulfide (H2S) is a gasotransmitter employed for intra- and inter-cellular communication in almost all organ systems. This study investigates the role of endogenous H2S in nerve-evoked relaxation of pig terminal bronchioles with 260 μm medium internal lumen diameter. High expression of the H2S synthesis enzyme cystathionine γ-lyase (CSE) in the bronchiolar muscle layer and strong CSE-immunoreactivity within nerve fibers distributed along smooth muscle bundles were observed. Further, endogenous H2S generated in bronchiolar membranes was reduced by CSE inhibition. In contrast, cystathionine β-synthase expression, another H2S synthesis enzyme, however was not consistently detected in the bronchiolar smooth muscle layer. Electrical field stimulation (EFS) and the H2S donor P-(4-methoxyphenyl)-P-4-morpholinylphosphinodithioic acid (GYY4137) evoked smooth muscle relaxation. Inhibition of CSE, nitric oxide (NO) synthase, soluble guanylyl cyclase (sGC) and of ATP-dependent K+, transient receptor potential A1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) channels reduced the EFS relaxation but failed to modify the GYY4137 response. Raising extracellular K+ concentration inhibited the GYY4137 relaxation. Large conductance Ca2+-activated K+ channel blockade reduced both EFS and GYY4137 responses. GYY4137 inhibited the contractions induced by histamine and reduced to a lesser extent the histamine-induced increases in intracellular [Ca2+]. These results suggest that relaxation induced by EFS in the pig terminal bronchioles partly involves the H2S/CSE pathway. H2S response is produced via NO/sGC-independent mechanisms involving K+ channels and intracellular Ca2+ desensitization-dependent pathways. Thus, based on our current results H2S donors might be useful as bronchodilator agents for the treatment of lung diseases with persistent airflow limitation, such as asthma and chronic obstructive lung disease.
  • Item
    Differential contribution of renal cytochrome P450 enzymes to kidney endothelial dysfunction and vascular oxidative stress in obesity
    (Biochemical Pharmacology, 2021) Muñoz Picos, Mercedes; López-Oliva Muñoz, María Elvira; Pinilla Pérez, Estéfano; Rodríguez Prados, Claudia; Martínez Saiz, María Pilar; Contreras Jiménez, Cristina; Gómez, Alfonso; Benedito Castellote, Sara; Sáenz Medina, Javier; Rivera De Los Arcos, Luis; Prieto Ocejo, Dolores
    Arachidonic acid (AA)-derived cytochrome P450 (CYP) derivatives, epoxyeicosatrienoic acids (EETs) and 20-hidroxyeicosatetranoic acid (20-HETE), play a key role in kidney tubular and vascular functions and blood pressure. Altered metabolism of CYP epoxygenases and CYP hydroxylases has differentially been involved in the pathogenesis of metabolic disease-associated vascular complications, although the mechanisms responsible for the vascular injury are unclear. The present study aimed to assess whether obesity-induced changes in CYP enzymes may contribute to oxidative stress and endothelial dysfunction in kidney preglomerular arteries. Endothelial function and reactive oxygen species (ROS) production were assessed in interlobar arteries of obese Zucker rats (OZR) and their lean counterparts lean Zucker rats (LZR) and the effects of CYP2C and CYP4A inhibitors sulfaphenazole and HET0016, respectively, were examined on the endothelium-dependent relaxations and O2 − and H2O2 levels of preglomerular arteries. Non-nitric oxide (NO) non-prostanoid endothelium-derived hyperpolarization (EDH)-type responses were preserved but resistant to the CYP epoxygenase blocker sulfaphenazole in OZR in contrast to those in LZR. Sulfaphenazole did not further inhibit reduced arterial H2O2 levels, and CYP2C11/CYP2C23 enzymes were downregulated in intrarenal arteries from OZR. Renal EDH-mediated relaxations were preserved in obese rats by the enhanced activity and expression of endothelial calcium-activated potassium channels (KCa). CYP4A blockade restored impaired NO-mediated dilatation and inhibited augmented O2 − production in kidney arteries from OZR. The current data demonstrate that both decreased endothelial CYP2C11/ CYP2C23-derived vasodilator H2O2 and augmented CYP4A-derived 20-HETE contribute to endothelial dysfunction and vascular oxidative stress in obesity. CYP4A inhibitors ameliorate arterial oxidative stress and restore endothelial function which suggests its therapeutic potential for the vascular complications of obesity-associated kidney injury.
  • Item
    Supplementation with a Cocoa–Carob Blend, Alone or in Combination with Metformin, Attenuates Diabetic Cardiomyopathy, Cardiac Oxidative Stress and Inflammation in Zucker Diabetic Rats
    (Antioxidants, 2022) García Díez, Esther; López-Oliva Muñoz, María Elvira; Caro Vadillo, Alicia; Pérez Vizcaíno, Francisco; Pérez Jiménez, Jara; Ramos, Sonia; Martín, María Ángeles
    Diabetic cardiomyopathy (DCM) is one of the main causes of mortality among diabetic patients, with oxidative stress and inflammation major contributors to its development. Dietary flavonoids show strong antioxidant and anti-inflammatory activities, although their potential additive outcomes in combination with antidiabetic drugs have been scarcely explored. The present study investigates the cardioprotective effects of a cocoa–carob blend (CCB) diet, rich in flavonoids, alone or in combination with metformin, in the development of DCM. Zucker diabetic fatty rats (ZDF) were fed with a CCB rich-diet or a control diet, with or without metformin for 12 weeks. Glucose homeostasis, cardiac structure and function, and oxidative and inflammatory biomarkers were analysed. CCB improved glucose homeostasis, and mitigated cardiac dysfunction, hypertrophy, and fibrosis in ZDF rats. Mechanistically, CCB counteracted oxidative stress in diabetic hearts by down-regulating NADPH oxidases, reducing reactive oxygen species (ROS) generation and modulating the sirtuin-1 (SIRT1)/ nuclear factor E2-related factor 2 (Nrf2) signalling pathway, overall improving antioxidant defence. Moreover, CCB suppressed inflammatory and fibrotic reactions by inhibiting nuclear factor kappa B (NFκB) and pro-inflammatory and pro-fibrotic cytokines. Noteworthy, several of these effects were further improved in combination with metformin. Our results demonstrate that CCB strongly prevents the cardiac remodelling and dysfunction observed in diabetic animals, highlighting its potential, alone or in adjuvant therapy, for treating DCM.
  • Item
    The bitter taste receptor (TAS2R) agonist denatonium promotes a strong relaxation of rat corpus cavernosum
    (Biochemical Pharmacology, 2023) Navarro Dorado, Jorge; Climent Flórez, Belén; López-Oliva Muñoz, María Elvira; Martínez Sainz, María Del Pilar; Hernández Martín, Marina; Agis Torres, Ángel; Recio Visedo, María Paz; Barahona Gomáriz, María Victoria; Benedito Castellote, Sara; Leite Fernandes, Vitor Samuel; Hernández Rodríguez, Medardo Vicente
    Bitter taste receptors (TAS2R) are found in numerous extra-oral tissues, including smooth muscle (SM) cells in both vascular and visceral tissues. Upon activation, TAS2R stimulate the relaxation of the SM. Nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling pathway is involved in penile erection, and type 5 phosphodiesterase (PDE5) inhibitors, a cGMP-specific hydrolase are used as first-line treatments for erectile dysfunction (ED). Nevertheless, PDE5 inhibitors are ineffective in a considerable number of patients, prompting research into alternative pharmacological targets for ED. Since TAS2R agonists regulate SM contractility, this study investigates the role of TAS2Rs in rat corpus cavernosum (CC). We performed immunohistochemistry to detect TAS2R10, isometric force recordings for TAS2R agonists denatonium and chloroquine, the slow-release H2S donor GYY 4137, the NO donor SNAP, the β-adrenoceptor agonist isoproterenol and electrical field stimulation (EFS), as well as measurement of endogenous hydrogen sulfide (H2S) production. The immunofluorescence staining indicated that TAS2R10 was broadly expressed in the CC SM and to some extent in the nerve fibers. Denatonium, chloroquine, SNAP, and isoproterenol cause potent dose-dependent SM relaxations. H2S production was decreased by NO and H2S synthase inhibitors, while it was enhanced by denatonium. In addition, denatonium increased the relaxations induced by GYY 4137 and SNAP but failed to modify EFS- and isoproterenol-induced responses. These results suggest neuronal and SM TAS2R10 expression in the rat CC, where denatonium induces a strong SM relaxation per se and promotes the H2S- and NO-mediated inhibitory gaseous neurotransmission. Thus, TAS2R10 might represent a valuable therapeutic target in ED.
  • Item
    In vitro inhibition of phosphodiesterase type 4 enhances rat corpus cavernosum nerve-mediated relaxation induced by gasotransmitters
    (Life Sciences, 2022) Leite Fernandes, Vitor Samuel; López-Oliva Muñoz, María Elvira; Martínez Sainz, María Del Pilar; Agis Torres, Ángel; Recio Visedo, María Paz; Navarro Dorado, Jorge; Barahona Gomáriz, María Victoria; Benedito Castellote, Sara; Prieto Ocejo, Dolores; Climent Flórez, Belén; Hernández Rodríguez, Medardo Vicente
    Aims: Nitric oxide (NO) and hydrogen sulfide (H2S) are involved in nerve-mediated corpus cavernosum (CC) relaxation. Expression of phosphodiesterase type 5 (PDE5) and type 4 (PDE4), cyclic guanosine monophosphate (cGMP)- and cyclic adenosine monophosphate (cAMP)-specific, respectively, has been described and PDE5- and PDE4-inhibitors induce cavernous smooth muscle relaxation. Whereas the NO/cGMP signaling pathway is well established in penile erection, the cAMP-mediated mechanism is not fully elucidated. The aim of this study is to investigate the localization and the functional significance of PDE4 in rat CC tone regulation. Main methods: We performed immunohistochemistry for the detection of the PDE4A isoenzyme. Isometric tension recordings for roflumilast and tadalafil, PDE4 and PDE5 inhibitors, respectively, electrical field stimulation (EFS) and β-adrenoceptor agonist isoproterenol and endogenous H2S production measurement. Key findings: A marked PDE4A expression was detected mainly localized in the nerve cells of the cavernous smooth muscle. Furthermore, roflumilast and tadalafil exhibited strong corpus cavernous relaxations. Endoge-nous H2S production was decreased by NO and H2S synthase inhibitors and increased by roflumilast. Isopro-terenol- and EFS-induced relaxations were increased by roflumilast. Significance: These results indicate that PDE4A is mainly expressed within the nerves cells of the rat CC, where roflumilast induces a potent corpus cavernous relaxation per se and potentiates the response induced by β-adrenoceptor activation. The fact that roflumilast enhances H2S production, as well as EFS-elicited responses suggests that PDE4 inhibitors modulate, in a positive feedback fashion, nerve-mediated relaxation induced by gasotransmitters, thus indicating a key role for neuronal PDE4 in penile erection.
  • Item
    Project number: 292
    Implementación del aprendizaje basado en problemas (ABP) en la enseñanza práctica de la fisiología del sistema digestivo
    (2019) López-Oliva Muñoz, María Elvira; Sánchez Pina, Ana Alejandra; Hernández Rodríguez, Medardo Vicente; Prieto Ocejo, Dolores; García Sacristán, Albino; Contreras Jiménez, Cristina; Martínez Gómez, Ana Cristina; Agis Torres, Ángel; Climent Flórez, Belén; Rivera De Los Arcos, Luis; Recio Visedo, María Paz; Benedito Castellote, Sara; Muñoz Picos, Mercedes; Raposo González, Rafaela