Person:
Córdoba Barba, Diego

Loading...
Profile Picture
First Name
Diego
Last Name
Córdoba Barba
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 10 of 17
  • Publication
    Survey explores active tectonics in Northeastern Caribbean
    (2005-12-20) Carbó Gorosabel, Andrés; Córdoba Barba, Diego; Martín Dávila, José; Ten Brink, Uri S.; Herranz Araújo, Pedro; Von Hilldebrant, Christa; Payero, Juan; Muñoz Martín, Alfonso; Pazos, Antonio; Catalán, Manuel; Granja Bruña, José Luis; Gómez Ballesteros, María
    There is renewed interest in studying the active and complex northeastern Caribbean plate boundary to better understand subduction zone processes and for earthquake and tsunami hazard assessments [e.g., ten Brink and Lin, 2004; ten Brink et al., 2004; Grindlay et al, 2005]. To study the active tectonics of this plate boundary, the GEOPRICO-DO (Geological, Puerto Rico-Dominican) marine geophysical cruise, carried out between 28 March and 17 April 2005 (Figure 1), studied the active tectonics of this plate boundary. Initial findings from the cruise have revealed a large underwater landslide, and active faults on the seafloor (Figures 2a and 2c). These findings indicate that the islands within this region face a high risk from tsunami hazards, and that local governments should be alerted in order to develop and coordinate possible mitigation strategies. The cruise collected multibeam bathymetry, gravity, magnetic, high-resolution seismic, deep seismic sounding, and multichannel seismic reflection data, which are currently being processed and interpreted (Table 1). In early November 2005, 10 ocean-bottom seismometers (OBS) that had been deployed northeast of Puerto Rico and the Virgin Islands (Figure 1) during the cruise were recovered. These OBS recorded data during the cruise and the local seismicity between April and October 2005.
  • Publication
    Gravity modeling of the Muertos Trough and tectonic implications (north-eastern Caribbean)
    (Springer Verlag, 2010-11-08) Granja Bruña, José Luis; Muñoz Martín, Alfonso; Ten Brink, Uri S.; Carbó Gorosabel, Andrés; Llanes Estrada, Pilar; Martín Dávila, José; Córdoba Barba, Diego; Catalán, Manuel
    The Muertos Trough in the northeast Caribbean has been interpreted as a subduction zone from seismicity, leading to infer a possible reversal subduction polarity. However, the distribution of the seismicity is very diffuse and makes definition of the plate geometry difficult. In addition, the compressive deformational features observed in the upper crust and sandbox kinematic modeling do not necessarily suggest a subduction process. We tested the hypothesized subduction of the Caribbean plate’s interior beneath the eastern Greater Antilles island arc using gravity modeling. Gravity models simulating a subduction process yield a regional mass deficit beneath the island arc independently of the geometry and depth of the subducted slab used in the models. This mass deficit results from sinking of the less dense Caribbean slab beneath the lithospheric mantle replacing denser mantle materials and suggests that there is not a subducted Caribbean plateau beneath the island arc. The geologically more realistic gravity model which would explain the N–S shortening observed in the upper crust requires an overthrusted Caribbean slab extending at least 60 km northward from the deformation front, a progressive increase in the thrusting angle from 8 to 30 reaching a maximum depth of 22 km beneath the insular slope. This new tectonic model for the Muertos Margin, defined as a retroarc thrusting, will help to assess the seismic and tsunami hazard in the region. The use of gravity modeling has provided targets for future wide-angle seismic surveys in the Muertos Margin.
  • Publication
    The extended continental crust West of Islas Marías (Mexico)
    (Frontiers Media, 2021-09-23) Núñez, Diana; Acosta-Hernández, Jorge A.; Escalona-Alcáraz, Felipe de Jesús; Pilia, Simone; Núñez-Cornú, Francisco Javier; Córdoba Barba, Diego
    The crustal structure around the Islas Marías Archipelago has been debated for a long time. An important unresolved question is where the Rivera-North American plate subduction ends and the Tamayo fracture zone begins, from SE to NW. Results from the TsuJal project have shed light on the northwesternmost part of the Jalisco block structure. It is now clear that Sierra de Cleofas and the Islas Marías Escarpment comprise the northwestern continuation of the Middle America trench. However, other questions remain. In this paper, we present the structure of the shallow and deep crust and the upper mantle of the Islas Marías western region through the integration of multichannel seismic reflection, wide-angle seismic bathymetric and seismicity data, including records of an amphibious seismic network, OBS, and portable seismic stations, purposely deployed for this project, providing an onshore-offshore transect of 310 km length. Our findings disclose new evidence of the complex structure of the Rivera plate that dips 8°–9° underneath the NW Jalisco block as revealed by two seismic profiles parallel to the Islas Marías Escarpment. Moreover, we find five sedimentary basins and active normal faults at the edges of tectonic structures of the E-W oriented West Ranges and the N-S trending Sierra de Cleofas. Furthermore, the Sierra de Cleofas is the beginning of the active subduction of the Rivera plate beneath North America. The oceanic crust thickens and submerges towards the south while is coupled with the continental crust, from 6 km at the northern ends of the seismic profiles to 15 km in the contact region and 24 km at the coast and southern ends of them. The continental Moho was not fully characterized because of the geometry of the seismic transects, but a low-velocity layer associated with Rivera Plate subduction was observed beneath the Jalisco Block. Our results constrain the complexity of the area and reveal new structural features from the oceanic to continental crust and will be pivotal to assess geohazards in this area.
  • Publication
    Seismotectonic characterization of Mexico
    (Editorial Universidad Nacional (EUNA), Costa Rica, 2019-07-01) Cotilla Rodríguez, Mario; Córdoba Barba, Diego; Núnez Cornú, Francisco Javier
    México es una Región Sismotectónica activa, mayoritariamente en la placa continental de Norteamérica y tiene los 2 tipos de sismicidad (entreplacas y de interior de placa). La estructura jerárquica contiene 3 Provincias Sismotectónicas (Norte-Occidental, Occidental y Centro-Oriental), en ellas hay 11 Unidades Sismotectónicas y en éstas se localizan las zonas sismogenéticas. Estas últimas están segmentadas. La Provincia Occidental es la de más nivel y donde se encuentra el contacto de las placas convergentes.
  • Publication
    IBERARRAY: La componente sísmica del proyecto TopoIberia
    (Sociedad Geológica de España., 2008) Morales Soto, José; Pazos, Antonio; García Lobón, J.L.; Córdoba Barba, Diego; Álvarez Pulgar, Francisco Javier; Carbonell Beltrán, Ramón; Villaseñor Rodríguez, Isabel; Díaz Cusí, Jordi; Gaite Castrillo, Beatriz; Gallart Muset, Josep
    Iberarray, componente sísmica del proyecto TopoIberia, está formada por una red densa de estaciones sísmicas de banda ancha y alta resolución a semejanza del USarray del proyecto Earthscope. Los objetivos que se persiguen con la instalación de Iberarray es estudiar la relación que existe entre los procesos que tienen lugar a escala litosférica y en la corteza de la península Ibérica, mar de Alborán y norte de Marruecos. Esta red está dedicada fundamentalmente a generar una base de datos de formas de onda con una resolución sin precedentes en una zona de especial interés geodinámico como es la región del contacto de placas continentales de Eurasia y Africa. Esta red está ya instalada en su primera fase, hasta 38.5º de Latitud, conformando una malla de 50x50 km entre estaciones. Iberarray está constituida por 50 estaciones de banda ancha más las aportaciones de las redes permanentes en la zona (IAG-UGR,ROA) y las redes portátiles del IAG-UGR y del ICT-CSIC. Iberarray es el brazo sísmico del proyecto multidisciplinar TopoIberia.
  • Publication
    Estudio sísmico de la corteza superior en Isla Decepción (Antártida)
    (Sociedad Geológica de España., 2004) Agudo, I.M.; Córdoba Barba, Diego; Dávila, J.M.; Pazos-López, Ángel
    In this work, results from 4 refraction/wide angle seismic profiles, acquired in 2002 during the GEODEC-MAR cruise across Deception Island volcanic interior; have allowed us to determine the upper crustal structure. According to P-wave velocity-depth model obtained, a four layer structure have been observed. The first and the second layers correspond to the sedimentary cover (1.8-2.8 and 3.5-3.6 km s'1 respectively). The third one is interpreted as the crystalline basement (4.0-4.9 km s'1). The fourth layer is separated in two zones which indicate two types of crust: type 1-5.5 km s type 11-6.0 km s'1, the contact between both zones could be related with a fracture zone across Deception Island.
  • Publication
    Adelgazamiento de la corteza en el margen septentrional del Golfo de Cádiz
    (Sociedad Geológica de España., 2004) Medialdea Cela, Teresa; Córdoba Barba, Diego; Vegas, Ramón; Dañobeitia, J.J.
    Refraction/wide angle seismic profiles acquired in 2000 during the Parsifal cruise across the Southportuguese Zone, the Algarve Basin and the South Iberian continental margin have allowed us to determine the crustal structure west of the Bank of Guadalquivir, which has been constrained by gravity modelling. According to the crustal model obtained, a crustal thinning of 11 km takes place from the shoreline to the Guadalquivir Bank area, where enhanced crustal attenuation has been found. Under the sedimentary cover, the velocity structure consists of a wedge-shaped upper crust with velocities between 5.8 and 5.9 km/s, characterised by a pronounced thickness variation. In the middle-lower crust, velocity increases from 6 to 7 km/s.
  • Publication
    Exploring active tectonics in the Dominican Republic
    (AGU, 2010-07-27) Carbó Gorosabel, Andrés; Córdoba Barba, Diego; Martín Dávila, José; Granja Bruña, José Luis; Llanes Estrada, Pilar; Muñoz Martín, Alfonso; Ten Brink, Uri S.
    One recent project, Caribbean–North American Plate Boundary Analysis: From Beata Ridge (Dominican Republic) to Anegada Passage (Lesser Antilles) (CARIBENORTE), has conducted onshore and offshore surveys in the Dominican Republic region to study subduction, strike- slip, and collision processes in this area. This survey included a cruise aboard the Spanish R/V Hespérides in April 2009 and simultaneous fieldwork onshore. The CARIBE NORTE project complements the study of the northeastern Caribbean plate boundary carried out during the Structure and Geodynamics of the Northeastern Boundary of the Caribbean Plate: Puerto Rico (GEOPRICO- DO) project in 2005 [Carbó et al., 2005].
  • Publication
    Structure and evolution of the ‘‘Olistostrome’’ complex of the Gibraltar Arc in the Gulf of Cádiz (eastern Central Atlantic): evidence from two long seismic cross-sections
    (Elsevier B.V., 2004) Medialdea Cela, Teresa; Vegas, Ramón; Somoza Losada, Luis; Vázquez Garrido, Juan Tomás; Maldonado López, Andrés; Díaz del Río Español, Víctor; Maestro González, Adolfo; Córdoba Barba, Diego; Fernández Puga, Mª Carmen
    Reflection profiles characterize the structure and the upper Mesozoic to Cenozoic deposits of the Gulf of Ca´diz region. Two long ENE–WSW multichannel seismic lines (ca. 400–500 km long) are analyzed to study the evolution of the area from the continental shelf to the Horseshoe and Seine abyssal plains. The huge allochthonous deposits emplaced in this region (the socalled ‘‘Olistostrome’’ of the Gulf of Cadiz) are described in terms of three different domains on the basis of the seismic architecture, the main tectonic features and the nature of the basement, oceanic or continental. The eastern domain extends along the continental shelf and upper and middle slope and corresponds to the offshore extension of the Betic–Rifean external front. It is characterized by salt and shale nappes later affected by extensional collapses. The central domain develops along the lower slope between the Betic–Rifean front and the abyssal plains and is characterized by a change in dip of the allochthonous basal surface and the basement. The allochthonous masses were emplaced by a combined gravitational and tectonic mechanism. The northern boundary of this domain is marked by the occurrence of an outstanding WNW–ESE-trending thrust fault with a strike-slip component, termed here as the Gorringe–Horseshoe fault. The westernmost domain corresponds to the abyssal plains, where the distal emplacement of the allochthonous body takes place; it is characterized by thrust faults affecting both the sedimentary cover and the oceanic basement. The allochthonous masses show a less chaotic character and the thickness decreases notably. These domains represent different evolutionary steps in the mechanisms of emplacement of the allochthonous units. The eastern domain of the allochthonous units was emplaced as part of the pre-Messinian orogenic wedge related to the collision that gave rise to the Betic–Rifean Belt, whereas the allochthonous wedge of the central and western domains were emplaced later as a consequence of the NE–SW late Miocene compression that continues in present times.
  • Publication
    Morfotectónica de Jalisco y Oaxaca (1), México
    (Univesidad Nacional de Costa Rica, Escuela Ciencias geográficas, 2017-07) Cotilla Rodríguez, Mario; Córdoba Barba, Diego; Núnez Cornú, Francisco Javier; Gómez Hernández, Adán; Pinzón López, Juan Ignacio; Rivera-Rodríguez, Leonardo Daniel
    La transmisión de esfuerzos, desde la zona de interacción convergente de placas en el Pacífico hacia el interior continental, ha determinado la actual configuración del plano morfotectónico del entorno mexicano. Ese proceso ha producido dos importantes zonas de deformación transversales, Puerto Vallarta y Oaxaca. Aplicando la metodología de Rantsman (1979) se ha determinado en el territorio emergido un mismo patrón morfoestructural y morfotectónico con ciertas modificaciones en Puerto Vallarta. Para la zona centro-oeste mexicana se distinguen 6 bloques, 29 microbloques, 6 alineamientos principales y 4 intersecciones principales de alineamientos. Estos elementos se ajustan a las zonas de mayor actividad y deformación neotectónica (~38000 km2), con un eje principal NO-SE. La misma técnica se aplicó a la región de Oaxaca, adyacente a Tehuantepec, donde hay 8 bloques, 25 microbloques, 8 alineamientos principales y 14 intersecciones principales de alineamientos. Este conjunto tiene una zona de deformación (~40000 km2) con eje principal E-O. El análisis de la sismicidad, las fracturas, los alineamientos, los cuerpos volcánicos y las velocidades de convergencia de las placas con los modelos obtenidos, permite considerar un movimiento de rotación anti-horario, vinculado a la microplaca Rivera para Puerto Vallarta; mientras que en Oaxaca existe un ajuste frontal en la convergencia directa de la placa Cocos, donde no hay rotación.