Person:
Córdoba Barba, Diego

Loading...
Profile Picture
First Name
Diego
Last Name
Córdoba Barba
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 3 of 3
  • Item
    Crustal architecture at the collision zone between rivera and north american plates at the Jalisco block: Tsujal project
    (Pure and Applied Geophysics, 2016) Dañobeitia, Juanjo; Bartolomé, Rafael; Prada, Manel; Núñez-Cornú, Francisco; Córdoba Barba, Diego; Bandy, William; Estrada, F; Cameselle, Alejandra; Núñez Escribano, Diana; Castellón, Arturo; Alonso, José Luis; Mortera, Carlos; Ortiz, Modesto
    Processing and analysis of new multichannel seismic records, coincident with wide-angle seismic profiles, acquired in the framework of the TsuJal project allow us to investigate in detail the complex structure of the oceanic domain in the collision zone between Rivera Plate and Block Jalisco at its northern termination. The subducting Rivera Plate, which is overridden by the North American Plate–Jalisco Block, is clearly identified up to 21.5°N (just south of Maria Magdalena Island) as a two clear reflections that we interpret as the interplate and Moho discontinuities. North of the Tres Marias Islands the seismic images display a different tectonic scenario with structures that are consistent with large faulting and rifted margin. A two-dimensional velocity approach for the crustal geometry is achieved using joint refraction/reflection travel time tomography, the uncertainty of the results is assessed by means of Monte Carlo analysis. Our results show an average oceanic crustal thickness of 6–7 km with a moderate increase towards the Jalisco Block, an anomalous thick layers (~3.0 km) displaying a relatively low velocity (~5.5 km/s) underneath Maria Magdalena Rise, and an estimated Moho depth deeper than 15 km in the collision zone between Rivera Plate and Jalisco Block. We have also determined an anomalous crust on the western flank of the Tres Marias Islands, which may be related to the initial phases of continental breakup of the Baja California Peninsula and Mexico mainland. High-resolution bathymetry provides remarkable images of intensive slope instabilities marked by relatively large slides scars of more than 40 km2 extent, and mass-wasting deposits probably triggered by the intense seismicity in the area.
  • Item
    Geophysical studies across Rivera Plate and Jalisco Block, Mexico: TsuJal Project
    (Seismological Research Letters, 2016) Núñez-Cornú, Francisco ; Córdoba Barba, Diego; Dañobeitia, Juan José; Bandy, William ; Ortiz Figueroa, Modesto; Bartolomé, Rafael; Núñez Escribano, Diana; Zamora-Camacho, Araceli; Espíndola, Juan Manuel; Castellón, Arturo; Escudero, Christian ; Trejo-Gómez, Elizabeth; Escalona-Alcázar, Felipe de Jesús; Suárez-Plascencia, Carlos; Nava, Alejandro; Mortera, Carlos; TsuJal Working Group
    In the spring of 2014, an onshore–offshore geophysical experiment (“Crustal Characterization of the Rivera plate–Jalisco Block Boundary and Its Implications for Seismic and Tsunami Hazard Assessment”) was carried out in the frame of the TsuJal project to define the crustal architecture of the western Mexican active margin and identify potential structural sources that can trigger earthquakes and tsunamis at the convergence between the Rivera plate (RP) and the Jalisco Block (JB) within the North American plate. In this work, we present the preliminary results about bathymetric, structural geology, and wide‐angle seismic data of the southern coast of Bahía de Banderas. These data indicate the slab thickness in this area is about 10 km and presents a dip angle of about 8°. Continental crustal thickness below Puerto Vallarta is about 20 km, but no evidences of continental Moho and clear subduction features (trench, accretionary prism) are observed. Nevertheless, this model supports the hypothesis that the region of Bahía de Banderas is under strong crustal stresses generating structural lineaments with the same trends offshore and inland due to the convergence of the RP against the JB. Most of the seismicity reported can be associated with the main structural lineaments. Moreover, the Banderas Canyon (BC) is apparently in an eastward opening process, which seems to continue through the Rio Pitillal river valley; no seismic or morphological evidences were found to suggest the BC is a continuation of the Vallarta graben. Offshore, the Sierra de Cleofas, located south of María Cleofas Island, marks the limit between the RP and the JB along 100 km. It may be the result of the RP pushing against the JB establishing the beginning of the current subduction process, with associated seismic activity. If a subduction type earthquake occurs in this area, the associated magnitude will be about 7.5 and could have a tsunamigenic effect.
  • Item
    The TsuJal Amphibious Seismic Network: A Passive-Source Seismic Experiment in Western Mexico
    (Frontiers in Earth Science, 2021) Javier Núñez-Cornú, Francisco; Córdoba Barba, Diego; Bandy, William; José Dañobeitia, Juan; Alarcón Salazar, José Edgar; Núñez Escribano, Diana; Suárez Plascencia, Carlos
    The geodynamic complexity in the western Mexican margin is controlled by the multiple interactions between the Rivera, Pacific, Cocos, and North American plates, as evidenced by a high seismicity rate, most of whose hypocenters are poorly located. To mitigate this uncertainty with the aim of improving these hypocentral locations, we undertook the TsuJal Project, a passive seafloor seismic project conducted from April to November 2016. In addition to the Jalisco Seismic Network, 10 LCHEAPO 2000 Ocean Bottom Seismometers (OBSs) were deployed by the BO El Puma in a seafloor array from the Islas Marias Archipelago (Nayarit) to the offshore contact between the states of Colima and Michoacan. We located 445 earthquakes in four or more OBSs within the deployed array. Most of these earthquakes occurred in the contact region of the Rivera, Pacific, and Cocos plates, and a first analysis suggests the existence of three seismogenic zones (West, Center, and East) along the Rivera Transform fault that can be correlated with its morphological expression throughout the three seismogenic zones. The seismicity estimates that the Moho discontinuity is located at 10 km depth and supports earlier works regarding the West zone earthquake distribution. Subcrustal seismicity in the Central zone suggests that the Intra-Transform Spreading Basin domain is an ultra-low spreading ridge. A seismic swarm occurred during May and June 2016 between the eastern tip of the Paleo-Rivera Transform fault and the northern tip of the East Pacific Rise-Pacific Cocos Segment, illuminating some unidentified tectonic feature.