Person:
Córdoba Barba, Diego

Loading...
Profile Picture
First Name
Diego
Last Name
Córdoba Barba
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Ciencias Físicas
Department
Física de la Tierra y Astrofísica
Area
Física de la Tierra
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet ID

Search Results

Now showing 1 - 2 of 2
  • Item
    The extended continental crust West of Islas Marías (Mexico)
    (Frontiers in Earth Science, 2021) Núñez Escribano, Diana; Acosta Hernández, Jorge A.; Escalona Alcáraz, Felipe de Jesús; Pilia, Simone; Núñez Cornú, Francisco Javier; Córdoba Barba, Diego
    The crustal structure around the Islas Marías Archipelago has been debated for a long time. An important unresolved question is where the Rivera-North American plate subduction ends and the Tamayo fracture zone begins, from SE to NW. Results from the TsuJal project have shed light on the northwesternmost part of the Jalisco block structure. It is now clear that Sierra de Cleofas and the Islas Marías Escarpment comprise the northwestern continuation of the Middle America trench. However, other questions remain. In this paper, we present the structure of the shallow and deep crust and the upper mantle of the Islas Marías western region through the integration of multichannel seismic reflection, wide-angle seismic bathymetric and seismicity data, including records of an amphibious seismic network, OBS, and portable seismic stations, purposely deployed for this project, providing an onshore-offshore transect of 310 km length. Our findings disclose new evidence of the complex structure of the Rivera plate that dips 8°–9° underneath the NW Jalisco block as revealed by two seismic profiles parallel to the Islas Marías Escarpment. Moreover, we find five sedimentary basins and active normal faults at the edges of tectonic structures of the E-W oriented West Ranges and the N-S trending Sierra de Cleofas. Furthermore, the Sierra de Cleofas is the beginning of the active subduction of the Rivera plate beneath North America. The oceanic crust thickens and submerges towards the south while is coupled with the continental crust, from 6 km at the northern ends of the seismic profiles to 15 km in the contact region and 24 km at the coast and southern ends of them. The continental Moho was not fully characterized because of the geometry of the seismic transects, but a low-velocity layer associated with Rivera Plate subduction was observed beneath the Jalisco Block. Our results constrain the complexity of the area and reveal new structural features from the oceanic to continental crust and will be pivotal to assess geohazards in this area.
  • Item
    The TsuJal Amphibious Seismic Network: A Passive-Source Seismic Experiment in Western Mexico
    (Frontiers in Earth Science, 2021) Javier Núñez-Cornú, Francisco; Córdoba Barba, Diego; Bandy, William; José Dañobeitia, Juan; Alarcón Salazar, José Edgar; Núñez Escribano, Diana; Suárez Plascencia, Carlos
    The geodynamic complexity in the western Mexican margin is controlled by the multiple interactions between the Rivera, Pacific, Cocos, and North American plates, as evidenced by a high seismicity rate, most of whose hypocenters are poorly located. To mitigate this uncertainty with the aim of improving these hypocentral locations, we undertook the TsuJal Project, a passive seafloor seismic project conducted from April to November 2016. In addition to the Jalisco Seismic Network, 10 LCHEAPO 2000 Ocean Bottom Seismometers (OBSs) were deployed by the BO El Puma in a seafloor array from the Islas Marias Archipelago (Nayarit) to the offshore contact between the states of Colima and Michoacan. We located 445 earthquakes in four or more OBSs within the deployed array. Most of these earthquakes occurred in the contact region of the Rivera, Pacific, and Cocos plates, and a first analysis suggests the existence of three seismogenic zones (West, Center, and East) along the Rivera Transform fault that can be correlated with its morphological expression throughout the three seismogenic zones. The seismicity estimates that the Moho discontinuity is located at 10 km depth and supports earlier works regarding the West zone earthquake distribution. Subcrustal seismicity in the Central zone suggests that the Intra-Transform Spreading Basin domain is an ultra-low spreading ridge. A seismic swarm occurred during May and June 2016 between the eastern tip of the Paleo-Rivera Transform fault and the northern tip of the East Pacific Rise-Pacific Cocos Segment, illuminating some unidentified tectonic feature.