Person:
Navarro González De Mesa, Elisa

Loading...
Profile Picture
First Name
Elisa
Last Name
Navarro González De Mesa
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Medicina
Department
Bioquímica y Biología Molecular
Area
Bioquímica y Biología Molecular
Identifiers
UCM identifierScopus Author IDDialnet ID

Search Results

Now showing 1 - 5 of 5
  • Item
    New melatonin–cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection
    (Future Medicinal Chemistry, 2015) Buendia, Izaskun; Navarro González De Mesa, Elisa; Michalska Dziama, Patrycja; Gameiro, Isabel; Egea, Javier; Abril, Sheila; López, Alicia; González-Lafuente, Laura; G. López, Manuela; León Martínez, Rafael
    Neurodegenerative diseases share many pathological pathways, such as abnormal protein aggregation, mitochondrial dysfunction, extensive oxidative stress and neuroinflammation. Cells have an intrinsic mechanism of protection, the Nrf2 transcriptional factor, known as the master regulator of redox homeostasis. Results: Based on the common features of these diseases we have designed a multi-target hybrid structure derived from melatonin and ethyl cinnamate. The obtained derivatives were Nrf2 inducers and potent-free radical scavengers. These new compounds showed a very interesting neuroprotective profile in several in vitro models of oxidative stress, Alzheimer's disease and brain ischemia. Conclusion: We have designed a new hybrid structure with complementary activities. We have identified compound 5h as an interesting Nrf2 inducer, very potent antioxidant and neuroprotectant.
  • Item
    Nrf2–ARE pathway: An emerging target against oxidative stress and neuroinflammation in neurodegenerative diseases
    (Pharmacology & Therapeutics, 2016) Buendia, Izaskun; Michalska Dziama, Patrycja; Navarro González De Mesa, Elisa; Gameiro, Isabel; Egea, Javier; León Martínez, Rafael
    Neurodegenerative diseases (NDDs) are predicted to be the biggest health concern in this century and the second leading cause of death by 2050. The main risk factor of these diseases is aging, and as the aging population in Western societies is increasing, the prevalence of these diseases is augmenting exponentially. Despite the great efforts to find a cure, current treatments remain ineffective or have low efficacy. Increasing lines of evidence point to exacerbated oxidative stress, mitochondrial dysfunction and chronic neuroinflammation as common pathological mechanisms underlying neurodegeneration. We will address the role of the nuclear factor E2-related factor 2 (Nrf2) as a potential target for the treatment of NDDs. The Nrf2–ARE pathway is an intrinsic mechanism of defence against oxidative stress. Nrf2 is a transcription factor that induces the expression of a great number of cytoprotective and detoxificant genes. There are many evidences that highlight the protective role of the Nrf2–ARE pathway in neurodegenerative conditions, as it reduces oxidative stress and neuroinflammation. Therefore, the Nrf2 pathway is being increasingly considered a therapeutic target for NDDs. Herein we will review the deregulation of the Nrf2 pathway in different NDDs and the recent studies with Nrf2 inducers as “proof-of-concept” for the treatment of those devastating pathologies.
  • Item
    Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction
    (Biochemical Pharmacology, 2015) Navarro González De Mesa, Elisa; Buendía, Izaskun; Parada, Esther; León Martínez, Rafael; Jansen-Duerr, Pidder; Pircher, Haymo; Egea, Javier; García López, Manuela
    Subchronic oxidative stress and inflammation are being increasingly implicated in the pathogenesis of numerous diseases, such as Alzheimer's or Parkinson's disease. This study was designed to evaluate the potential protective role of α7 nicotinic receptor activation in an in vitro model of neurodegeneration based on subchronic oxidative stress. Rat organotypic hippocampal cultures (OHCs) were exposed for 4 days to low concentration of lipopolysaccharide (LPS) and the complex III mitochondrial blocker, antimycin-A. Antimycin-A (0.1μM) and lipopolysaccharide (1ng/ml) caused low neurotoxicity on their own, measured as propidium iodide fluorescence in CA1 and CA3 regions. However, their combination (LPS/AA) caused a greater detrimental effect, in addition to mitochondrial depolarization, overproduction of reactive oxygen species (ROS) and Nox4 overexpression. Antimycin-A per se increased ROS and mitochondrial depolarization, although these effects were significantly higher when combined with LPS. More interesting was the finding that exposure of OHCs to the combination of LPS/AA triggered aberrant protein aggregation, measured as thioflavin S immunofluorescence. The α7 nicotinic receptor agonist, PNU282987, prevented the neurotoxicity and the pathological hallmarks observed in the LPS/AA subchronic toxicity model (oxidative stress and protein aggregates); these effects were blocked by α-bungarotoxin and tin protoporphyrin, indicating the participation of α7 nAChRs and heme-oxygenase I induction. In conclusion, subchronic exposure of OHCs to low concentration of antimycin-A plus LPS reproduced pathological features of neurodegenerative disorders. α7 nAChR activation ameliorated these alterations by a mechanism involving heme-oxygenase I induction.
  • Item
    Melatonin–sulforaphane hybrid ITH12674 induces neuroprotection in oxidative stress conditions by a ‘drug–prodrug’ mechanism of action
    (British Journal of Pharmacology, 2015) Egea, Javier; Buendia, Izaskun; Parada, Esther; Navarro González De Mesa, Elisa; Rada, Patricia; Cuadrado, Antonio; López, Manuela G.; García García, Antonio; León Martínez, Rafael
    Background and purpose: Neurodegenerative diseases are a major problem afflicting ageing populations; however, there are no effective treatments to stop their progression. Oxidative stress and neuroinflammation are common factors in their pathogenesis. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the master regulator of oxidative stress, and melatonin is an endogenous hormone with antioxidative properties that reduces its levels with ageing. We have designed a new compound that combines the effects of melatonin with Nrf2 induction properties, with the idea of achieving improved neuroprotective properties. Experimental approach: Compound ITH12674 is a hybrid of melatonin and sulforaphane designed to exert a dual drug-prodrug mechanism of action. We obtained the proposed hybrid in a single step. To test its neuroprotective properties, we used different in vitro models of oxidative stress related to neurodegenerative diseases and brain ischaemia. Key results: ITH12674 showed an improved neuroprotective profile compared to that of melatonin and sulforaphane. ITH12674 (i) mediated a concentration-dependent protective effect in cortical neurons subjected to oxidative stress; (ii) decreased reactive oxygen species production; (iii) augmented GSH concentrations in cortical neurons; (iv) enhanced the Nrf2-antioxidant response element transcriptional response in transfected HEK293T cells; and (v) protected organotypic cultures of hippocampal slices subjected to oxygen and glucose deprivation and re-oxygenation from stress by increasing the expression of haem oxygenase-1 and reducing free radical production. Conclusion and implications: ITH12674 combines the signalling pathways of the parent compounds to improve its neuroprotective properties. This opens a new line of research for such hybrid compounds to treat neurodegenerative diseases.
  • Item
    Microglial HO‐1 induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective effects
    (Molecular Nutrition & Food Research, 2015) Parada, Esther; Buendia, Izaskun; Navarro González De Mesa, Elisa; Avendaño, Carlos; Egea, Javier; García López, Manuela
    Scope: We have studied if curcumin can protect glial cells under an oxidative stress and inflammatory environment, which is known to be deleterious in neurodegeneration. Methods and results: Primary rat glial cultures exposed to the combination of an oxidative (rotenone/oligomycin A) and a proinflammatory LPS stimuli reduced by 50% glial viability. Under these experimental conditions, curcumin afforded significant glial protection and reduction of reactive oxygen species; these effects were blocked by the HO-1 inhibitor tin protoporphyrin-IX (SnPP). These findings correlate with the observation that curcumin induced the antioxidative protein HO-1. Most interesting was the observation that the glial protective effects related to HO-1 induction were microglial specific as shown in glial cultures from LysM(Cre) Hmox(∆/∆) mice where curcumin lost its protective effect. Under LPS conditions, curcumin reduced the microglial proinflammatory markers iNOS and tumor necrosis factor, but increased the anti-inflammatory cytokine IL4. Analysis of the microglial phenotype showed that curcumin favored a ramified morphology toward a microglial alternative activated state against LPS insult also by a HO-1-dependent mechanism. Conclusion: The curry constituent curcumin protects glial cells and promotes a microglial anti-inflammatory phenotype by a mechanism that implicates HO-1 induction; these effects may have impact on brain protection under oxidative and inflammatory conditions.