Person:
Benedí González, Juana María

Loading...
Profile Picture
First Name
Juana María
Last Name
Benedí González
Affiliation
Universidad Complutense de Madrid
Faculty / Institute
Farmacia
Department
Farmacología, Farmacognosia y Botánica
Area
Farmacología
Identifiers
UCM identifierORCIDScopus Author IDWeb of Science ResearcherIDDialnet IDGoogle Scholar ID

Search Results

Now showing 1 - 10 of 10
  • Item
    Can Meat and Meat-Products Induce Oxidative Stress?
    (Antioxidants, 2020) Macho González, Adrián; Garcimartín Álvarez, Alba; López-Oliva Muñoz, María Elvira; Bastida Codina, Sara; Benedí González, Juana María; Ros, Gaspar; Nieto, Gema; Sánchez Muniz, Francisco José
    High meat and meat-products consumption has been related to degenerative diseases. In addition to their saturated fatty acids and cholesterol contents, oxidation products generated during their production, storage, digestion, and metabolization have been largely implicated. This review begins by summarizing the concept of meat and meat-products by the main international regulatory agencies while highlighting the nutritional importance of their consumption. The review also dials in the controversy of white/red meat classification and insists in the need of more accurate classification based on adequate scores. Since one of the negative arguments that meat receives comes from the association of its consumption with the increase in oxidative stress, main oxidation compounds (malondialdehyde, thermaloxidized compounds, 4-hydroxy-nonenal, oxysterols, or protein carbonyls) generated during its production, storage, and metabolization, are included as a central aspect of the work. The review includes future remarks addressed to study the effects meat consumption in the frame of diet–gene interactions, stressing the importance of knowing the genetic variables that make individuals more susceptible to a possible oxidative stress imbalance or antioxidant protection. The importance of consumed meat/meat-products in the frame of a personalized nutrition reach in plant-food is finally highlighted considering the importance of iron and plant biophenols on the microbiota abundance and plurality, which in turn affect several aspects of our physiology and metabolism.
  • Item
    Carob fruit extract-enriched meat, as preventive and curative treatments, improves gut microbiota and colonic barrier integrity in a late-stage T2DM model
    (Food Research International, 2021) Macho González, Adrián; Garcimartín Álvarez, Alba; Redondo, Noemí; Cofrades, Susana; Bastida Codina, Sara; Nova, Esther; Benedí González, Juana María; Sánchez Muniz, Francisco José; Marcos, Ascensión; López-Oliva Muñoz, María Elvira
    Epidemiological and experimental studies have suggested that dietary fiber and proanthocyanidins play an important role on gut microbiota (GM), colonic integrity and body health. Type 2 Diabetes Mellitus (T2DM) is a prevalent disease in which the modifications in the GM and colonic markers stand out. This manuscript hypothesizes the consumption of functional meat enriched in carob fruit extract [CFE; CFE-restructured meat (RM)] ameliorates the dysbiosis and colonic barrier integrity loss in a late-stage T2DM rat model induced by the conjoint action of a high-saturated-fat/high-cholesterol diet (Chol-diet) and a low dose of streptozotocin (STZ) plus a nicotinamide (NAD) injection. Three groups of eight rats were used: (1) D group, a T2DM control group, fed the Chol-diet; (2) ED group, a T2DM preventive strategy group fed the CFE-Chol-diet since the beginning of the study; and (3) DE group, a T2DM curative treatment group, fed the CFE-Chol-diet once the diabetic state was confirmed. The study lasted 8 weeks. Amount and variety of GM, feces short-chain-fatty acids (SCFAs), colonic morphology [crypt depth and density, goblet cells, proliferating cell nuclear antigen (PCNA) and transferase dUTP nick end labelling (TUNEL) indexes] and tight junctions were evaluated. A global colonic index combining 17 markers (GCindex) was calculated. ED rats displayed higher levels of GM richness, SCFAs production, crypt depth, and goblet cells than the D group. DE group showed lower Enterobacteriaceae abundance and greater TUNEL index and occludin expression in the distal colon than D counterpart. GCindex differentiated the colonic health status of the experimental groups in the order (ED > DE > D; P < 0.001) as a 17–51 range-quotation, ED, DE, and D groups displayed the values 43, 32.5, and 27, respectively. Thus, CFE-RM used as a T2DM preventive therapy could induce higher GM richness, more adequate SCFAs production, and better colonic barrier integrity. Furthermore, CFE-RM used with curative purposes induced more modest changes and mainly at the distal colonic mucosa. Further studies are needed to confirm this study’s results, to ascertain the benefits of consuming proanthocyanidins-rich fiber during different T2DM stages.
  • Item
    The Influence of Cellulose Ethers on the Physico-Chemical Properties, Structure and Lipid Digestibility of Animal Fat Emulsions Stabilized by Soy Protein
    (Foods, 2022) Cofrades, Susana; Saiz, Arancha; Pérez-Mateos, Miriam; Garcimartín Álvarez, Alba; Redondo-Castillejo, Rocío; Bocanegra De Juana, Aranzazu; Benedí González, Juana María; Álvarez, María Dolores
    This study explores the influence of carboxymethylcelullose (CMC) and methylcelullose (MC), added by simultaneous (sim) and sequential (seq) emulsification methods, on the structure, rheological parameters and in vitro lipid digestibility of pork lard O/W emulsions stabilized by soy protein concentrate (SPC). Five emulsions (SPC, SPC/CMC-sim, SPC/CMC-seq SPC/MC-sim, SPC/MC-seq) were prepared in vitro. The presence of CMC and MC, and the stage of incorporation affected the emulsion microstructure. In the SPC emulsion, lipid droplets were entrapped by a protein layer that was thicker when MC was added, providing greater resistance against environmental stresses during gastrointestinal digestion. At 37 °C, CMC incorporation produced a structural reinforcement of the SPC emulsion, whereas MC addition did not affect the network rigidity, although a delaying effect on the crossover temperature was observed, which was more evident in SPC/MC–seq. The presence and stage of CMC and MC incorporation affected the rate and extent of lipolysis, with SPC/MC-seq presenting an inferior concentration of free fatty acids. The lower extent of lipolysis observed in SPC/MC-seq may be positive in the manufacture of animal fat products in which reduced fatty acid absorption is intended.
  • Item
    Influence of the oil structuring system on Lipid hydrolysis and bioaccessibility of healthy fatty acids and curcumil
    (Gels, 2023) Cofrades, Susana; Gómez-Estaca, Joaquín; Álvarez, María; Garcimartín Álvarez, Alba; Macho González, Adrián; Benedí González, Juana María; Pintado, Tatiana
    Oleogels (OG) and gelled emulsions (GE) were elaborated with a mixture of olive and chia oils (80:20 ratio) without and with the incorporation of the health-related compound curcumin. These were studied to evaluate the influence of the oil structuring system on the lipid hydrolysis and bioaccessibility of three healthy fatty acids (FA) (palmitic, oleic, and α-linolenic acids) and of curcumin, compared to the oil mixture (bulk oil, BO). The oil structuring system influenced the firmness and texture, and the presence of curcumin significantly altered the color parameters. GE showed higher lipid digestibility, with a greater proportion of absorbable fraction (higher content of free FA and monoacylglycerides) than OG, which behaved similarly to BO. The presence of curcumin affected the degree of lipolysis, reducing lipid digestibility in OG and increasing it in GE. As for FA bioaccessibility, although GE presented higher percentages overall, curcumin significantly increased and decreased FA bioaccessibility in OG and GE, respectively. The oil structuring system also influenced the bioaccessibility of curcumin, which was higher in GE. Therefore, when selecting an oil structuring system, their physicochemical properties, the degree of lipid hydrolysis, and the bioaccessibility of both curcumin and the FA studied should all be considered.
  • Item
    Carob fruit extract-enriched meat improves pancreatic beta-cell dysfunction, hepatic insulin signaling and lipogenesis in late-stage type 2 diabetes mellitus model
    (The Journal of Nutritional Biochemistry, 2020) Macho González, Adrián; López-Oliva Muñoz, María Elvira; Merino Martín, José Joaquín; García Fernández, Rosa Ana; Garcimartín Álvarez, Alba; Bastida Codina, Sara; Redondo Castillejo, Rocío; Sánchez Muniz, Francisco José; Benedí González, Juana María
    The inclusion of functional bioactive compounds of dietary fiber in meat products has been demonstrated to exert a significant impact on human health. Carob fruit extract (CFE) is a dietary fiber rich in proanthocyanidins with known antioxidant, hypolipidemic and hypoglycemic effects. Consumption of CFE-enriched meat (CFE-RM) may provide interesting benefits in late-stage type 2 diabetes mellitus (T2DM). To explore the antidiabetic mechanisms of CFE-RM, we used a model of late-stage T2DM in Wistar rats fed a high-saturated-fat/high-cholesterol diet (Chol-diet) and injected streptozotocin plus nicotinamide (D group). The effects of CFE-RM were tested by incorporating it into the diet as preventive strategy (ED group) or curative treatment (DE group). CFE-RM had a positive effect on glycemia, enhancing hepatic insulin sensitivity and improving pancreatic β-cell regeneration in both ED and DE groups. Western blotting and immunohistochemistry suggested that CFE-RM increased levels of insulin receptor β and phosphatidylinositol-3-kinase, as well as the downstream target phospho-Akt (at Ser473). CFE-RM also up-regulated glucose transporter 2, which improves the insulin-mediated glucose uptake by the liver, and promoted phosphorylation of glycogen synthesis kinase-3βprotein (at ser9), consequently increasing the hepatic glycogen content. In addition, CFE-RM decreased fatty liver by suppressing de novo lipogenesis activation due to down-regulation of liver X receptor-α/β, sterol regulatory element binding protein-1c and carbohydrate-response element-binding protein transcription factors. Our findings suggest that the consumption of CFE-RM included in the diet as a functional food should be considered as a suitable nutritional strategy to prevent or manage late-stage T2DM.
  • Item
    Silicon as a Functional Meat Ingredient Improves Jejunal and Hepatic Cholesterol Homeostasis in a Late-Stage Type 2 Diabetes Mellitus Rat Model
    (Foods, 2024) Hernández Martín, Marina; Garcimartín Álvarez, Alba; Bocanegra De Juana, Aranzazu; Redondo Castillejo, Rocío; Quevedo Torremocha, Claudia; Macho González, Adrián; García Fernández, Rosa Ana; Bastida Codina, Sara; Benedí González, Juana María; Sánchez Muniz, Francisco José; López-Oliva Muñoz, María Elvira
    Silicon included in a restructured meat (RM) matrix (Si-RM) as a functional ingredient has been demonstrated to be a potential bioactive antidiabetic compound. However, the jejunal and hepatic molecular mechanisms by which Si-RM exerts its cholesterol-lowering effects remain unclear. Male Wistar rats fed an RM included in a high-saturated-fat high-cholesterol diet (HSFHCD) combined with a low dose of streptozotocin plus nicotinamide injection were used as late-stage type 2 diabetes mellitus (T2DM) model. Si-RM was included into the HSFHCD as a functional food. An early-stage TD2M group fed a high-saturated-fat diet (HSFD) was taken as reference. Si-RM inhibited the hepatic and intestinal microsomal triglyceride transfer protein (MTP) reducing the apoB-containing lipoprotein assembly and cholesterol absorption. Upregulation of liver X receptor (LXRα/β) by Si-RM turned in a higher low-density lipoprotein receptor (LDLr) and ATP-binding cassette transporters (ABCG5/8, ABCA1) promoting jejunal cholesterol efflux and transintestinal cholesterol excretion (TICE), and facilitating partially reverse cholesterol transport (RCT). Si-RM decreased the jejunal absorptive area and improved mucosal barrier integrity. Consequently, plasma triglycerides and cholesterol levels decreased, as well as the formation of atherogenic lipoprotein particles. Si-RM mitigated the dyslipidemia associated with late-stage T2DM by Improving cholesterol homeostasis. Silicon could be used as an effective nutritional approach in diabetic dyslipidemia management.
  • Item
    Functional meat products as oxidative stress modulators: a review
    (Advances in Nutrition, 2021) Macho González, Adrián; Bastida Codina, Sara; Garcimartín Álvarez, Alba; López-Oliva Muñoz, María Elvira; González, Pilar; Benedí González, Juana María; González Muñoz, María José; Sánchez Muniz, Francisco José
    High meat consumption has been associated with increased oxidative stress mainly due to the generation of oxidized compounds in the body, such as malondialdehyde, 4-hydroxy-nonenal, oxysterols, or protein carbonyls, which can induce oxidative damage. Meat products are excellent matrices for introducing different bioactive compounds, to obtain functional meat products aimed at minimizing the pro-oxidant effects associated with high meat consumption. Therefore, this review aims to summarize the concept and preparation of healthy and functional meat, which could benefit antioxidant status. Likewise, the key strategies regarding meat production and storage as well as ingredients used (e.g., minerals, polyphenols, fatty acids, walnuts) for developing these functional meats are detailed. Although most effort has been made to reduce the oxidation status of meat, newly emerging approaches also aim to improve the oxidation status of consumers of meat products. Thus, we will delve into the relation between functional meats and their health effects on consumers. In this review, animal trials and intervention studies are discussed, ascertaining the extent of functional meat products' properties (e.g., neutralizing reactive oxygen species formation and increasing the antioxidant response). The effects of functional meat products in the frame of diet–gene interactions are analyzed to 1) discover target subjects that would benefit from their consumption, and 2) understand the molecular mechanisms that ensure precision in the prevention and treatment of diseases, where high oxidative stress takes place. Long-term intervention-controlled studies, testing different types and amounts of functional meat, are also necessary to ascertain their positive impact on degenerative diseases.
  • Item
    Could Duodenal Molecular Mechanisms be Involved in the Hypocholesterolemic Effect of Silicon Used as Functional Ingredient in Late‐Stage Type 2 Diabetes Mellitus?
    (Molecular Nutrition & Food Research, 2022) Hernández Martín, Marina; Bocanegra De Juana, Aranzazu; Redondo Castillejo, Rocío; Macho González, Adrián; Sánchez Muniz, Francisco José; Benedí González, Juana María; Bastida Codina, Sara; García Fernández, Rosa Ana; Garcimartín Álvarez, Alba; López-Oliva Muñoz, María Elvira
    Scope: Hypercholesterolemia increases the risk of mortality in type 2 diabetesmellitus (T2DM), especially in the late-stage. Consumption of bioactivecompounds as functional ingredients would help achieve therapeutic goals forcholesterolemia. Silicon has demonstrated a hypocholesterolemic effect andthe ability to reduce fat digestion. However, it is unclear whether silicon exertssuch effect in late-stage T2DM (LD) and the intestinal mechanisms involved.Methods and results: Three groups of eight rats were included: early-stageT2DM control (ED), LD, and the LD group treated with silicon (LD-Si) oncethe rats were diabetic. Morphological alterations of the duodenal mucosa, andlevels of markers involve in cholesterol absorption and excretion, besidecholesterolemia, and fecal excretion were assayed. Silicon included as afunctional ingredient significantly reduces cholesterolemia in part due to: 1)reducing cholesterol intestinal absorption by decreasing the absorptive areaand Acetyl-Coenzyme A acetyltransferase-2 (ACAT2) levels; and 2) increasingcholesterol excretion to the lumen by induction of the liver X receptor (LXR)and consequent increase of adenosine triphosphate-binding cassettetransporter (ABCG5/8).Conclusions: These results provide insight into the intestinal molecularmechanisms by which silicon reduces cholesterolemia and highlights theefficacy of the consumption of silicon-enriched functional foods in late-stageT2DM.
  • Item
    Proanthocyanidins: Impact on Gut Microbiota and Intestinal Action Mechanisms in the Prevention and Treatment of Metabolic Syndrome
    (International Journal of Molecular Sciences , 2023) Redondo-Castillejo, Rocío; Garcimartín Álvarez, Alba; Hernández Martín, Marina; López-Oliva Muñoz, María Elvira; Bocanegra De Juana, Aranzazu; Macho González, Adrián; Bastida Codina, Sara; Benedí González, Juana María; Sánchez Muniz, Francisco José
    The metabolic syndrome (MS) is a cluster of risk factors, such as central obesity, hyperglycemia, dyslipidemia, and arterial hypertension, which increase the probability of causing premature mortality. The consumption of high-fat diets (HFD), normally referred to high-saturated fat diets, is a major driver of the rising incidence of MS. In fact, the altered interplay between HFD, microbiome, and the intestinal barrier is being considered as a possible origin of MS. Consumption of proanthocyanidins (PAs) has a beneficial effect against the metabolic disturbances in MS. However, there are no conclusive results in the literature about the efficacy of PAs in improving MS. This review allows a comprehensive validation of the diverse effects of the PAs on the intestinal dysfunction in HFD-induced MS, differentiating between preventive and therapeutic actions. Special emphasis is placed on the impact of PAs on the gut microbiota, providing a system to facilitate comparison between the studies. PAs can modulate the microbiome toward a healthy profile and strength barrier integrity. Nevertheless, to date, published clinical trials to verify preclinical findings are scarce. Finally, the preventive consumption of PAs in MS-associated dysbiosis and intestinal dysfunction induced by HFD seems more successful than the treatment strategy.
  • Item
    Whole Alga, Algal Extracts, and Compounds as Ingredients of Functional Foods: Composition and Action Mechanism Relationships in the Prevention and Treatment of Type-2 Diabetes Mellitus
    (International Journal of Molecular Sciences, 2021) Bocanegra De Juana, Aranzazu; Macho González, Adrián; Garcimartín Álvarez, Alba; Benedí González, Juana María; Sánchez Muniz, Francisco José
    Type-2 diabetes mellitus (T2DM) is a major systemic disease which involves impaired pancreatic function and currently affects half a billion people worldwide. Diet is considered the cornerstone to reduce incidence and prevalence of this disease. Algae contains fiber, polyphenols, ω-3 PUFAs, and bioactive molecules with potential antidiabetic activity. This review delves into the applications of algae and their components in T2DM, as well as to ascertain the mechanism involved (e.g., glucose absorption, lipids metabolism, antioxidant properties, etc.). PubMed, and Google Scholar databases were used. Papers in which whole alga, algal extracts, or their isolated compounds were studied in in vitro conditions, T2DM experimental models, and humans were selected and discussed. This review also focuses on meat matrices or protein concentrate-based products in which different types of alga were included, aimed to modulate carbohydrate digestion and absorption, blood glucose, gastrointestinal neurohormones secretion, glycosylation products, and insulin resistance. As microbiota dysbiosis in T2DM and metabolic alterations in different organs are related, the review also delves on the effects of several bioactive algal compounds on the colon/microbiota-liver-pancreas-brain axis. As the responses to therapeutic diets vary dramatically among individuals due to genetic components, it seems a priority to identify major gene polymorphisms affecting potential positive effects of algal compounds on T2DM treatment.